ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-scale SUSY breaking and the (s)goldstino physics

156   0   0.0 ( 0 )
 نشر من قبل D. Ghilencea
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in conflict with the decoupling limit of the sgoldstino (1/m_sgoldstinosim Lambda/f, f<Lambda^2).



قيم البحث

اقرأ أيضاً

The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble c onstant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.
We discuss spontaneous supersymmetry (SUSY) breaking mechanisms by means of modulated vacua in four-dimensional ${cal N} =1$ supersymmetric field theories. The SUSY breaking due to spatially modulated vacua is extended to the cases of temporally and lightlike modulated vacua, using a higher-derivative model with a chiral superfield, free from the Ostrogradsky instability and the auxiliary field problem. For all the kinds of modulated vacua, SUSY is spontaneously broken and the fermion in the chiral superfield becomes a Goldstino. We further investigate the stability of the modulated vacua. The vacua are (meta)stable if the vacuum energy density is non-negative. However, the vacua become unstable due to the presence of the ghost Goldstino if the vacuum energy density is negative. Finally, we derive the relation between the presence of the ghost Goldstino and the negative vacuum energy density in the modulated vacua using the SUSY algebra.
174 - A. Amariti 2010
We study supersymmetry breaking metastable vacua arising from beta deformed quiver gauge theories. The relation between the bounds on metastability and the deformation are discussed. Metastable supersymmetry breaking vacua are found in the IR of beta deformed cascading quivers with vector-like field content. Furthermore the limiting case of massive Nf=Nc SQCD appears in the IR of gauge theories with chiral-like field content. We comment on the field theory origin of the deformation and on possible applications in AdS/CFT.
We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.
In N=1 supergravity the scalar potential may have supersymmetric (SUSY) and non-supersymmetric Minkowski vacua (associated with supersymmetric and physical phases) with vanishing energy density. In the supersymmetric Minkowski (second) phase some bre akdown of SUSY may be induced by non-perturbative effects in the observable sector that give rise to a tiny positive vacuum energy density. Postulating the exact degeneracy of the physical and second vacua as well as assuming that at high energies the couplings in both phases are almost identical, one can estimate the dark energy density in these vacua. It is mostly determined by the SUSY breaking scale M_S in the physical phase. Exploring the two-loop renormalization group (RG) flow of couplings in these vacua we find that the measured value of the cosmological constant can be reproduced if M_S varies from 20 TeV to 400 TeV. We also argue that this prediction for the SUSY breaking scale is consistent with the upper bound on M_S in the higgsino dark matter scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا