ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics

153   0   0.0 ( 0 )
 نشر من قبل Kristian Madsen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes-Cummings model, while systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to coupling of other exciton lines to the cavity and interference of different propagation paths towards the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities we observe an anti crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multiexcition complexes giving rise to collective emission effects.



قيم البحث

اقرأ أيضاً

188 - W. L. Vos , L. A. Woldering 2015
This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a full and complete 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nan oscale volume (aka a nanobox for light), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole s with a polymer we calculate the partition function of the coupled light-matter system and demonstrate it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroad between cavity quantum electrodynamics and quantum optomechanics, is a step forward in the on-going quest to understand how strong coupling can be exploited to influence matter internal degrees of freedom.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant um dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
Solid state quantum emitters have shown strong potential for applications in quantum information, but spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity-quantum dot system by demonstrating cavity -stimulated Raman spin flip emission. This process avoids populating the excited state of the emitter and generates a photon that is Raman shifted from the laser and enhanced by the cavity. The emission is spectrally narrow and tunable over a range of at least 125 GHz, which is two orders of magnitude greater than the natural linewidth. We obtain the regime in which the Raman emission is spin-dependent, which couples the photon to a long-lived electron spin qubit. This process can enable an efficient, tunable source of indistinguishable photons and deterministic entanglement of distant spin qubits in a photonic crystal quantum network.
We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode LC resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the usual Dicke model into the non-perturbative regime of QED, where the dipole-field interaction can be associated with an effective finestructure constant of order unity. In this regime, we identify three distinct classes of normal, superradiant and subradiant vacuum states and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the previous, often contradictory predictions in this field and establish a common theoretical framework to describe ultrastrong coupling phenomena in a diverse range of cavity-QED platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا