ﻻ يوجد ملخص باللغة العربية
We present the first results from our pilot 500 ks Chandra-LETG Large Program observation of the soft X-ray brightest source in the z>=0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2-4.1sigma. Six of these lines are detected at high single-line statistical significance (3.6 <= sigma <= 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or Far-Ultraviolet (FUV) signposts. In particular, five of these possible intervening absorption lines, are identified as CV and CVI Kalpha absorbers belonging to three WHIM systems at z_X = 0.312, z_X = 0.237 and <z_X> = 0.133, which also produce broad HI (and OVI for the z_X = 0.312 system) absorption in the FUV. For two of these systems (z_X = 0.312 and 0.237), the Chandra X-ray data led the a-posteriori discovery of physically consistent broad HI associations in the FUV, so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8 sigma (z_X = 0.312; 6.3 sigma if the low-significance OV and CV K-beta associations are considered), 3.9 sigma (z_X = 0.237), and 3.8 sigma (langle z_X rangle = 0.133), respectively.
We present a re-analysis, with newly acquired atomic data, of the two detections of two highly ionized intervening OVII absorbers reported by Nicastro and collaborators (2018). We confirm both intervening Warm-Hot Intergalactic Medium OVII detections
TeV blazars are known as prominent nonthermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV bands. If distant, absorption of gamma-ray photons by the extragalactic background light (EBL) alte
We report the Chandra detection of OVII Kalpha absorption at z=0 in the direction of the z=0.03 Seyfert 1 galaxy Mkn 279. The high velocity cloud Complex C lies along this line of sight, with HI 21-cm emission and OVI 1032AA absorption both observed
We present the results of five years (2005-2009) of MAGIC observations of the BL Lac object PG 1553+113 at very high energies (VHEs, E > 100 GeV). Power law fits of the individual years are compatible with a steady mean photon index Gamma = 4.27 $pm$
Several popular cosmological models predict that most of the baryonic mass in the local universe is located in filamentary and sheet-like structures associated with groups and clusters of galaxies. This gas is expected to be gravitationally heated to