ترغب بنشر مسار تعليمي؟ اضغط هنا

A Double Planetary System around the Evolved Intermediate-Mass Star HD 4732

183   0   0.0 ( 0 )
 نشر من قبل Bunei Sato
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a double planetary system orbiting around the evolved intermediate-mass star HD 4732 from precise Doppler measurements at Okayama Astrophysical Observatory (OAO) and Anglo-Australian Observatory (AAO). The star is a K0 subgiant with a mass of 1.7 M_sun and solar metallicity. The planetary system is composed of two giant planets with minimum mass of msini=2.4 M_J, orbital period of 360.2 d and 2732 d, and eccentricity of 0.13 and 0.23, respectively. Based on dynamical stability analysis for the system, we set the upper limit on the mass of the planets to be about 28 M_J (i>5 deg) in the case of coplanar prograde configuration.



قيم البحث

اقرأ أيضاً

We report on the discovery of a planetary companion candidate with a minimum mass Msini = 4.6 M_J orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our program to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coude echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph HERMES of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 days) variation with a semi-amplitude K = 133 m/s, superimposed on a long-term trend. A low-mass stellar companion with an orbital period of ~88 years in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry we find that HD 175370 is most likely a low-mass red-giant branch or asymptotic-giant branch star.
We present 63 new multi-site radial velocity measurements of the K1III giant HD 76920, which was recently reported to host the most eccentric planet known to orbit an evolved star. We focussed our observational efforts on the time around the predicte d periastron passage and achieved near-continuous phase coverage of the corresponding radial velocity peak. By combining our radial velocity measurements from four different instruments with previously published ones, we confirm the highly eccentric nature of the system, and find an even higher eccentricity of $e=0.8782 pm 0.0025$, an orbital period of $415.891^{+0.043}_{-0.039},mathrm{d}$, and a minimum mass of $3.13^{+0.41}_{-0.43},mathrm{M_J}$ for the planet. The uncertainties in the orbital elements are greatly reduced, especially for the period and eccentricity. We also performed a detailed spectroscopic analysis to derive atmospheric stellar parameters, and thus the fundamental stellar parameters ($M_*, R_*, L_*$), taking into account the parallax from Gaia DR2, and independently determined the stellar mass and radius using asteroseismology. Intriguingly, at periastron the planet comes to within 2.4 stellar radii of its host stars surface. However, we find that the planet is not currently experiencing any significant orbital decay and will not be engulfed by the stellar envelope for at least another $50-80$ Myr. Finally, while we calculate a relatively high transit probability of $16%$, we did not detect a transit in the TESS photometry.
We report the detection of a double planetary system around the evolved intermediate-mass star HD 47366 from precise radial-velocity measurements at Okayama Astrophysical Observatory, Xinglong Station, and Australian Astronomical Observatory. The sta r is a K1 giant with a mass of 1.81+-0.13M_sun, a radius of 7.30+-0.33R_sun, and solar metallicity. The planetary system is composed of two giant planets with minimum mass of 1.75^{+0.20}_{-0.17}Mjup and 1.86^{+0.16}_{-0.15}Mjup, orbital period of 363.3^{+2.5}_{-2.4} d and 684.7^{+5.0}_{-4.9} d, and eccentricity of 0.089^{+0.079}_{-0.060} and 0.278^{+0.067}_{-0.094}, respectively, which are derived by a double Keplerian orbital fit to the radial-velocity data. The system adds to the population of multi-giant-planet systems with relatively small orbital separations, which are preferentially found around evolved intermediate-mass stars. Dynamical stability analysis for the system revealed, however, that the best-fit orbits are unstable in the case of a prograde configuration. The system could be stable if the planets were in 2:1 mean-motion resonance, but this is less likely considering the observed period ratio and eccentricity. A present possible scenario for the system is that both of the planets have nearly circular orbits, namely the eccentricity of the outer planet is less than ~0.15, which is just within 1.4sigma of the best-fit value, or the planets are in a mutually retrograde configuration with a mutual orbital inclination larger than 160 degree.
We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and ha s a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 $pm$ 0.02 days, a semi-amplitude of 51.1 $pm$ 1.4 ms, an eccentricit y of 0.73 $pm$ 0.02 and a derived minimum mass of msini = 0.77 $pm$ 0.02 mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 $pm$ 2.0$^{circ}$; consequently, the planets closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 $pm$ 0.02 years, an orbital eccentricity of 0.12 $pm$ 0.06 and a semi-amplitude of 40.4 $pm$ 1.3 ms. The minimum mass is msini = 2.29 $pm$ 0.16 mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 $pm$ 3.8 days and an eccentricity of 0.26 $pm$ 0.14. The semi-amplitude of 14.2 $pm$ 2.7 ms implies a minimum mass of 0.48 $pm$ 0.09 mjup. The radial velocities of HD 164509 also exhibit a residual linear trend of -5.1 $pm$ 0.7 ms per year, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to sub-millimag levels on their radial velocity periods. This provides strong support for planetary reflex motion as the cause of the radial velocity variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا