ترغب بنشر مسار تعليمي؟ اضغط هنا

Period and period change measurements for 143 SuperWASP eclipsing binary candidates near the short-period limit and discovery of a doubly eclipsing quadruple system

112   0   0.0 ( 0 )
 نشر من قبل Marcus Lohr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Building on previous work, a new search of the SuperWASP archive was carried out to identify eclipsing binary systems near the short-period limit. 143 candidate objects were detected with orbital periods between 16000 and 20000 s, of which 97 are new discoveries. Period changes significant at 1 sigma or more were detected in 74 of these objects, and in 38 the changes were significant at 3 sigma or more. The significant period changes observed followed an approximately normal distribution with a half-width at half-maximum of ~0.1 s/yr. There was no apparent relationship between period length and magnitude or direction of period change. Amongst several interesting individual objects studied, 1SWASP J093010.78+533859.5 is presented as a new doubly eclipsing quadruple system, consisting of a contact binary with a 19674.575 s period and an Algol-type binary with a 112799.109 s period, separated by 66.1 AU, being the sixth known system of this type.



قيم البحث

اقرأ أيضاً

141 - M. E. Lohr 2012
SuperWASP light curves for 53 W UMa-type eclipsing binary (EB) candidates, identified in previous work as being close to the contact binary short-period limit, were studied for evidence of period change. The orbital periods of most of the stars were confirmed, and period decrease, significant at more than 5 sigma, was observed in three objects: 1SWASP J174310.98+432709.6 (-0.055 pm0.003 s/yr), 1SWASP J133105.91+121538.0 (-0.075 pm0.013 s/yr) and 1SWASP J234401.81-212229.1 (-0.313 pm0.019 s/yr). The magnitudes of the observed period changes cannot be explained by magnetic braking or gravitational radiation effects, and are most likely primarily due to unstable mass transfer from primary to secondary components, possibly accompanied by unstable mass and angular momentum loss from the systems. If these period decreases persist, the systems could merge on a relatively short timescale.
We present light curves and periods of 53 candidates for short period eclipsing binary stars identified by SuperWASP. These include 48 newly identified objects with periods <2x10^4 seconds (~0.23d), as well as the shortest period binary known with ma in sequence components (GSC2314-0530 = 1SWASP J022050.85+332047.6) and four other previously known W UMa stars (although the previously reported periods for two of these four are shown to be incorrect). The period distribution of main sequence contact binaries shows a sharp cut-off at a lower limit of around 0.22d, but until now, very few systems were known close to this limit. These new candidates will therefore be important for understanding the evolution of low mass stars and to allow investigation of the cause of the period cut-off.
The two objects 1SWASP J150822.80-054236.9 and 1SWASP J160156.04+202821.6 were initially detected from their SuperWASP archived light curves as candidate eclipsing binaries with periods close to the short-period cut-off of the orbital period distribu tion of main sequence binaries, at ~0.2 d. Here, using INT spectroscopic data, we confirm them as double-lined spectroscopic and eclipsing binaries, in contact configuration. Following modelling of their visual light curves and radial velocity curves, we determine their component and system parameters to precisions between ~2 and 11%. The former system contains 1.07 and 0.55 M_sun components, with radii of 0.90 and 0.68 R_sun respectively; its primary exhibits pulsations with period 1/6 the orbital period of the system. The latter contains 0.86 and 0.57 M_sun components, with radii of 0.75 and 0.63R_sun respectively.
We present our new photometry of DV Psc obtained in 2010 and 2011, and new spectroscopic observation on Feb. 14, 2012. During our observations, three flare-like events might be detected firstly in one period on DV Psc. The flare rate of DV Psc is abo ut 0.017 flares per hour. Using Wilson-Devinney program, we derived the preliminary starspot parameters. Moreover, the magnetic cycle is 9.26(+/-0.78) year analyzed by variabilities of Max.I - Max.II.
104 - M. E. Lohr 2015
Orbital period changes of binary stars may be caused by the presence of a third massive body in the system. Here we have searched the archive of the Wide Angle Search for Planets (SuperWASP) project for evidence of period variations in 13927 eclipsin g binary candidates. Sinusoidal period changes, strongly suggestive of third bodies, were detected in 2% of cases; however, linear period changes were observed in a further 22% of systems. We argue on distributional grounds that the majority of these apparently linear changes are likely to reflect longer-term sinusoidal period variations caused by third bodies, and thus estimate a higher-order multiplicity fraction of 24% for SuperWASP binaries, in good agreement with other recent figures for the fraction of triple systems amongst binary stars in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا