ﻻ يوجد ملخص باللغة العربية
There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. One distinct theoretical proposal is that, with decreasing hole-carrier concentration, a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the pseudogap temperature T* (T* > Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds that should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+d the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points toward a unifying picture of magnetism in the cuprates that will likely require a multi-band description.
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the mu
Angle resolved photoemission spectroscopy study is reported on a high quality optimally doped Bi2Sr1.6La0.4CuO6+delta high Tc superconductor. In the antinodal region with maximal d-wave gap, the symbolic superconducting coherence peak, which has been
A resonant inelastic x-ray scattering (RIXS) study of overdamped spin-excitations in slightly underdoped La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) with $x=0.12$ and $0.145$ is presented. Three high-symmetry directions have been investigated: (1) the antinodal
We use neutron scattering to study magnetic excitations near the antiferromagnetic wave vector in the underdoped single-layer cuprate HgBa2CuO4+{delta} (superconducting transition temperature Tc ~ 88 K, pseudogap temperature T* ~ 220 K). The response
The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inela