ﻻ يوجد ملخص باللغة العربية
We present an antenna shower formalism including contributions from initial-state partons and corresponding backwards evolution. We give a set of phase-space maps and antenna functions for massless partons which define a complete shower formalism suitable for computing observables with hadronic initial states. We focus on the initial-state components: initial-initial and initial-final antenna configurations. The formalism includes comprehensive possibilities for uncertainty estimates. We report on some preliminary results obtained with an implementation in the Vincia antenna-shower framework.
We consider the probability for a colour-singlet qqbar pair to emit a gluon, in strongly and smoothly ordered antenna showers. We expand to second order in alphaS and compare to the second-order QCD matrix elements for Z -> 3 jets, neglecting terms s
We present a complete set of helicity-dependent 2->3 antenna functions for QCD initial- and final- state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processe
We present a first implementation of collinear electroweak radiation in the Vincia parton shower. Due to the chiral nature of the electroweak theory, explicit spin dependence in the shower algorithm is required. We thus use the spinor-helicity formal
We derive a new method for initial-state collinear showering in Monte-Carlo event generators which is based on the use of unintegrated parton correlation functions. Combined with a previously derived method for final-state showering, the method solve
We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 to 3 kinematic picture is kept intact by dividing the radiative