ترغب بنشر مسار تعليمي؟ اضغط هنا

p6 - Chiral Resonating Valence Bonds in the Kagome Antiferromagnet

157   0   0.0 ( 0 )
 نشر من قبل Assa Auerbach
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kagome Heisenberg antiferromagnet is mapped onto an effective Hamiltonian on the star superlattice by Contractor Renormalization. Comparison of ground state energies on large lattices to Density Matrix Renormalization Group justifies truncation of effective interactions at range 3. Within our accuracy, magnetic and translational symmetries are not broken (i.e. a spin liquid ground state). However, we discover doublet spectral degeneracies which signal the onset of p6 - chirality symmetry breaking. This is understood by simple mean field analysis. Experimentally, the p6 chiral order parameter should split the optical phonons degeneracy near the zone center. Addition of weak next to nearest neighbor coupling is discussed.



قيم البحث

اقرأ أيضاً

Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin liquids (QSL). Here, we show that excitations related to singlet brea king on nearest-neighbor bonds describe the high-energy part of the excitation spectrum in YbMgGaO4, the effective spin-1/2 frustrated antiferromagnet on the triangular lattice, as originally considered by Anderson. By a thorough single-crystal inelastic neutron scattering (INS) study, we demonstrate that nearest-neighbor RVB excitations account for the bulk of the spectral weight above 0.5 meV. This renders YbMgGaO4 the first experimental system where putative RVB correlations restricted to nearest neighbors are observed, and poses a fundamental question of how complex interactions on the triangular lattice conspire to form this unique many-body state.
We study a short-range resonating valence bond (RVB) wave function with diagonal links on the square lattice that permits sign-problem free wave function Monte-Carlo studies. Special attention is given to entanglement properties, in particular, the s tudy of minimum entropy states (MES) according to the method of Zhang et. al. [Physical Review B {bf 85}, 235151 (2012)]. We provide evidence that the MES associated with the RVB wave functions can be lifted from an associated quantum dimer picture of these wave functions, where MES states are certain linear combinations of eigenstates of a t Hooft magnetic loop-type operator. From this identification, we calculate a value consistent with $ln(2)$ for the topological entanglement entropy directly for the RVB states via wave function Monte-Carlo. This corroborates the $mathbb{Z}_{2}$ nature of the RVB states. We furthermore define and elaborate on the concept of a pre-Kasteleyn orientation that may be useful for the study of lattices with non-planar topology in general.
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is wri tten. The state is shown to have $9^g$ topological degeneracy on genus g surface and support $Z_3$ vortex excitations. Correlation functions show exponential behavior with a very short correlation length consistent with the gapped spectrum. The classical problem of the degeneracy of trimer configurations is investigated by the transfer matrix method.
112 - O. Cepas 2011
We argue that the spin-wave breakdown in the Heisenberg kagome antiferromagnet signals an instability of the ground state and leads, through an emergent local constraint, to a quantum dynamics described by a gauge theory similar to that of chromodyna mics. For integer spins, we show that the quantum fluctuations of the gauge modes select the sqrt(3)xsqrt(3) Neel state with an on-site moment renormalized by color resonances. We find non-magnetic low-energy excitations that may be responsible for a deconfinement transition at experimentally accessible temperatures which we estimate.
Resonating valence bond (RVB) states are a class of entangled quantum many body wavefunctions with great significance in condensed matter physics. We propose a scheme to synthesize a family of RVB states using a cavity QED setup with two-level atoms (with states $vert 0 rangle$ and $vert 1 rangle$) coupled to a common photon mode. In the lossy cavity limit, starting with an initial state of $M$ atoms excited and $N$ atoms in the ground state, we show that this setup can be configured as a Stern Gerlach experiment. A measurement of photon emission collapses the wavefunction of atoms onto an RVB state composed of resonating long-ranged singlets of the form $frac{1}{sqrt{2}}[vert 0 1 rangle - vert 1 0 rangle]$. Each emitted photon reduces the number of singlets by unity, replacing it with a pair of lone spins or `spinons. As spinons are formed coherently in pairs, they are analogous to Cooper pairs in a superconductor. To simulate pair fluctuations, we propose a protocol in which photons are allowed to escape the cavity undetected. This leads to a mixed quantum state with a fluctuating number of spinon pairs -- an inchoate superconductor. Remarkably, in the limit of large system sizes, this protocol reveals an underlying quantum phase transition. Upon tuning the initial spin polarization ($M-N$), the emission exhibits a continuous transition from a dark state to a bright state. This is reflected in the spinon pair number distribution which can be tuned from sub-poissonian to super-poissonian regimes. This opens an exciting route to simulate RVB states and superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا