ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Environment on Discs and Bulges

83   0   0.0 ( 0 )
 نشر من قبل Claire Lackner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the changes in the properties of galactic bulges and discs with environment for a volume-limited sample of 12500 nearby galaxies from SDSS. We focus on galaxies with classical bulges. Classical bulges seem to have the same formation history as ellipticals of the same mass, and we test if environment determines whether or not a classical bulge possesses a disc. Using the projected fifth nearest neighbour density as a measure of local environment, we look for correlations with environment at fixed bulge stellar mass. In groups with fewer than 20 members, we find no evidence for changes in disc morphology with local density. At fixed bulge mass, disc mass and disc scale length are independent of local density. However, disc colour does increase (Delta(g - r) ~ 0.05 mag) as a function of local density in relatively poor groups. Therefore, the colour--density relation for classical bulge+disc galaxies in the field and in poor groups is due solely to changes in disc colour with density. In contrast, we find no correlations between disc colour and local density for classical bulge+disc galaxies in large, relaxed groups and clusters. However, there is a weak correlation between disc mass and group crossing time, suggesting morphological transformation takes places in rich groups. Our results add to the evidence that star formation is quenched in group environments, instead of clusters, and that star formation quenching and morphological transformation are separate processes. Overall, we show that environment has two effects on galactic discs: relatively low density environments can quench star formation in discs, while processes occurring in higher density environments contribute to the morphological transformation from disc-dominated systems to bulge-dominated systems.



قيم البحث

اقرأ أيضاً

The early-type spiral NGC 4698 is known to host a nuclear disc of gas and stars which is rotating perpendicularly with respect to the galaxy main disc. In addition, the bulge and main disc are characterised by a remarkable geometrical decoupling. Ind eed they appear elongated orthogonally to each other. In this work the complex structure of the galaxy is investigated by a detailed photometric decomposition of optical and near-infrared images. The intrinsic shape of the bulge was constrained from its apparent ellipticity, its twist angle with respect to the major axis of the main disc, and the inclination of the main disc. The bulge is actually elongated perpendicular to the main disc and it is equally likely to be triaxial or axisymmetric. The central surface brightness, scalelength, inclination, and position angle of the nuclear disc were derived by assuming it is infinitesimally thin and exponential. Its size, orientation, and location do not depend on the observed passband. These findings support a scenario in which the nuclear disc is the end result of the acquisition of external gas by the pre-existing triaxial bulge on the principal plane perpendicular to its shortest axis and perpendicular to the galaxy main disc. The subsequent star formation either occurred homogeneously all over the extension of the nuclear disc or through an inside-out process that ended more than 5 Gyr ago.
The origins of the bulge and disc components of galaxies are of primary importance to understanding galaxy formation. Here bulge-disc decomposition is performed simultaneously in B- and R-bands for 922 bright galaxies in 8 nearby (z < 0.06) clusters with deep redshift coverage using photometry from the NOAO Fundamental Plane Survey. The total galaxy colours follow a universal colour-magnitude relation (CMR). The discs of L_* galaxies are 0.24 magnitudes bluer in $B-R$ than bulges. Bulges have a significant CMR slope while the CMR slope of discs is flat. Thus the slope of the CMR of the total light is driven primarily (60%) by the bulge-CMR, and to a lesser extent (40%) by the change in the bulge-to-total ratio as a function of magnitude. The colours of the bulge and disc components do not depend on the bulge-to-total ratio, for galaxies with bulge-to-total ratios greater than 0.2. While the colours of the bulge components do not depend significantly on environment, the median colours of discs vary significantly, with discs in the cluster centre redder by 0.10 magnitudes than those at the virial radius. Thus while star formation in bulges appears to be regulated primarily by mass-dependent, and hence presumably internal, processes, that of discs is affected by the cluster environment.
Understanding the impact of environment on the formation and evolution of dark matter halos and galaxies is a crucial open problem. Studying statistical correlations in large simulated populations sheds some light on these impacts, but the causal eff ect of an environment on individual objects is harder to pinpoint. Addressing this, we present a new method for resimulating a single dark matter halo in multiple large-scale environments. In the initial conditions, we splice (i.e. insert) the Lagrangian region of a halo into different Gaussian random fields, while enforcing consistency with the statistical properties of $Lambda$CDM. Applying this technique, we demonstrate that the mass of halos is primarily determined by the density structure inside their Lagrangian patches, while the halos concentration is more strongly affected by environment. The splicing approach will also allow us to study, for example, the impact of the cosmic web on accretion processes and galaxy quenching.
696 - Kenneth C. Wong 2010
Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of gamma = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six 4-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is gamma = 0.05 (ranging from 0.01 to 0.14), indicating that line-of-sight contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the line of sight, particularly those bright (I < 21.5) galaxies projected within 5 of the lens.
With the aim of distinguishing between possible physical mechanisms acting on galaxies when they fall into clusters, we study the properties of the gas and the stars in a sample of 422 emission-line galaxies from EDisCS in different environments up t o z~1. We identify galaxies with kinematical disturbances (from emission-lines in their 2D spectra) and find that they are more frequent in clusters than in the field. The fraction of kinematically-disturbed galaxies increases with cluster velocity dispersion and decreases with distance from the cluster centre, but remains constant with projected galaxy density. We also studied morphological disturbances in the stellar light from HST/F814W images, finding that the fraction of morphologically disturbed galaxies is similar in all environments. Moreover, there is little correlation between the presence of kinematically-disturbed gas and morphological distortions. We also study the dependence of the Tully-Fisher relation, star formation, and extent of the emission on environment, and conclude that the gas disks in cluster galaxies have been truncated, and therefore their star formation is more concentrated than in low-density environments. If spirals transform into S0s, our findings imply that the physical mechanism transforming cluster galaxies efficiently disturbs the star-forming gas and reduces their specific star formation rate. Moreover, this star-forming gas is either removed more efficiently from the outskirts of the galaxies or is driven towards the centre (or both), helping to build the bulges of S0s. These results, in addition to the finding that the transformation mechanism does not seem to induce strong morphological disturbances on the galaxies, suggest that the physical processes involved are related to the intracluster medium, with galaxy-galaxy interactions playing only a limited role in clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا