ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio and gamma-ray follow-up of the exceptionally high activity state of PKS 1510-089 in 2011

94   0   0.0 ( 0 )
 نشر من قبل Monica Orienti
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the radio and gamma-ray variability of the flat spectrum radio quasar PKS 1510-089 in the time range between 2010 November and 2012 January. In this period the source showed an intense activity, with two major gamma-ray flares detected in 2011 July and October. During the latter episode both the gamma-ray and the radio flux density reached their historical peak. Multiwavelength analysis shows a rotation of about 380 deg of the optical polarization angle close in time with the rapid and strong gamma-ray flare in 2011 July. An enhancement of the optical emission and an increase of the fractional polarization both in the optical and in radio bands is observed about three weeks later, close in time with another gamma-ray outburst. On the other hand, after 2011 September a huge radio outburst has been detected, first in the millimeter regime followed with some time delay at centimeter down to decimeter wavelengths. This radio flare is characterized by a rising and a decaying stage, in agreement with the formation of a shock and its evolution, as a consequence of expansion and radiative cooling. If the gamma-ray flare observed in 2011 October is related to this radio outburst, then this strongly indicates that the region responsible for the gamma-ray variability is not within the broad line, but a few parsecs downstream along the jet.



قيم البحث

اقرأ أيضاً

The flat spectrum radio quasar PKS 1510-089 is a monitored target in many wavelength bands due to its high variability. It was detected as a very-high-energy (VHE) $gamma$-ray emitter with H.E.S.S. in 2009, and has since been a regular target of VHE observations by the imaging Cherenkov observatories H.E.S.S. and MAGIC. In this paper, we summarize the current state of results focusing on the monitoring effort with H.E.S.S. and the discovery of a particularly strong VHE flare in 2016 with H.E.S.S. and MAGIC. While the source has now been established as a weak, but regular emitter at VHE, no correlation with other energy bands has been established. This is underlined by the 2016 VHE flare, where the detected optical and high-energy $gamma$-ray counterparts evolve differently than the VHE flux.
Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs). MAGIC observed FSRQ PKS 1510-089 in February-April 2012 during a high activity state in t he high energy (HE, E>100 MeV) gamma-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 sigma. In agreement with the previous VHE observations of the source, we find no statistically significant variability during the MAGIC observations in daily, weekly or monthly time scales. The other two known VHE FSRQs have shown daily scale to sub-hour variability. We study the multifrequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO and VLBA telescopes), X-ray (Swift satellite) and HE gamma-ray frequencies. The gamma-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multifrequency light curves suggest a common origin for the millimeter radio and HE gamma-ray emission and the HE gamma-ray flaring starts when the new component is ejected from the 43GHz VLBA core. The quasi-simultaneous multifrequency SED is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infra-red torus and a slow sheath surrounding the jet around the VLBA core. Both models fit the data well. However, the fast HE gamma-ray variability requires that within the modelled large emitting region, there must exist more compact regions. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.
We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089 observed by AGILE in March 2009. In the same period a radio-to-optical monitoring of the source was provided by the GASP-WEBT and REM. Moreover, several Swift ToO observations wer e triggered, adding important information on the source behaviour from optical/UV to hard X-rays. We paid particular attention to the calibration of the Swift/UVOT data to make it suitable to the blazars spectra. Simultaneous observations from radio to gamma rays allowed us to study in detail the correlation among the emission variability at different frequencies and to investigate the mechanisms at work. In the period 9-30 March 2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2 s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on daily integration. The gamma-ray activity occurred during a period of increasing activity from near-IR to UV, with a flaring episode detected on 26-27 March 2009, suggesting that a single mechanism is responsible for the flux enhancement observed from near-IR to UV. By contrast, Swift/XRT observations seem to show no clear correlation of the X-ray fluxes with the optical and gamma-ray ones. However, the X-ray observations show a harder photon index (1.3-1.6) with respect to most FSRQs and a hint of harder-when-brighter behaviour, indicating the possible presence of a second emission component at soft X-ray energies. Moreover, the broad band spectrum from radio-to-UV confirmed the evidence of thermal features in the optical/UV spectrum of PKS 1510-089 also during high gamma-ray state. On the other hand, during 25-26 March 2009 a flat spectrum in the optical/UV energy band was observed, suggesting an important contribution of the synchrotron emission in this part of the spectrum during the brightest gamma-ray flare, therefore a significant shift of the synchrotron peak.
We report the detection by the AGILE satellite of a rapid gamma-ray flare from the powerful gamma-ray quasar PKS 1510-089, during a pointing centered on the Galactic Center region from 1 March to 30 March 2008. This source has been continuosly monito red in the radio-to-optical bands by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). Moreover, the gamma-ray flaring episode triggered three ToO observations by the Swift satellite in three consecutive days, starting from 20 March 2008. In the period 1-16 March 2008, AGILE detected gamma-ray emission from PKS 1510-089 at a significance level of 6.2-sigma with an average flux over the entire period of (84 +/- 17) x 10^{-8} photons cm^{-2} s^{-1} for photon energies above 100 MeV. After a predefined satellite re-pointing, between 17 and 21 March 2008, AGILE detected the source at a significance level of 7.3-sigma, with an average flux (E > 100 MeV) of (134 +/- 29) x 10^{-8} photons cm^{-2} s^{-1} and a peak level of (281 +/- 68) x 10^{-8} photons cm^{-2} s^{-1} with daily integration. During the observing period January-April 2008, the source also showed an intense and variable optical activity, with several flaring episodes and a significant increase of the flux was observed at millimetric frequencies. Moreover, in the X-ray band the Swift/XRT observations seem to show an harder-when-brighter behaviour of the source spectrum. The spectral energy distribution of mid-March 2008 is modelled with a homogeneous one-zone synchrotron self Compton emission plus contributions from inverse Compton scattering of external photons from both the accretion disc and the broad line region. Indeed, some features in the optical-UV spectrum seem to indicate the presence of Seyfert-like components, such as the little blue bump and the big blue bump.
PKS 1510-089 is one of the most variable blazars in the third Fermi-LAT source catalog. During 2015, this source has shown four flares identified as flare A, B, C, and D in between three quiescent states Q1, Q2, and Q3. The multi-wavelength data from Fermi-LAT, Swift-XRT/UVOT, OVRO, and SMA observatory are used in our work to model these states. Different flux doubling times have been observed in different energy bands which indicate there could be multiple emission zones. The flux doubling time from the gamma-ray and X-ray light curves are found to be 10.6 hr, 2.5 days, and the average flux doubling time in the optical/UV band is 1 day. It is possible that the gamma-ray and optical/UV emission are produced in the same region whereas X-ray emission is coming from a different region along the jet axis. We have also estimated the discrete correlations functions (DCFs) among the light curves of different energy bands to infer about their emission regions. However, our DCF analysis does not show significant correlation in different energy bands though it shows peaks in some cases at small time lags. We perform a two-zone multi-wavelength time-dependent SED modeling with one emission zone located near the outer edge of the broad line region (BLR) and another further away in the dusty/molecular torus (DT/MT) region to study this high state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا