ترغب بنشر مسار تعليمي؟ اضغط هنا

Summary of IAU GA SpS 5 II: Stellar and Wind Parameters

139   0   0.0 ( 0 )
 نشر من قبل Fabrice Martins
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Martins




اسأل ChatGPT حول البحث

The development of infrared observational facilities has revealed a number of massive stars in obscured environments throughout the Milky Way and beyond. The determination of their stellar and wind properties from infrared diagnostics is thus required to take full advantage of the wealth of observations available in the near and mid infrared. However, the task is challenging. This session addressed some of the problems encountered and showed the limitations and successes of infrared studies of massive stars.



قيم البحث

اقرأ أيضاً

The last part of SpS5 dealt with the circumstellar environment. Structures are indeed found around several types of massive stars, such as blue and red supergiants, as well as WRs and LBVs. As shown in the last years, the potential of IR for their st udy is twofold: first, IR can help discover many previously unknown nebulae, leading to the identification of new massive stars as their progenitors; second, IR can help characterize the nebular features. Current and new IR facilities thus pave the way to a better understanding of the feedback from massive stars.
Angular momentum (AM) is a key parameter to understand galaxy formation and evolution. AM originates in tidal torques between proto-structures at turn around, and from this the specific AM is expected to scale as a power-law of slope 2/3 with mass. H owever, subsequent evolution re-shuffles this through matter accretion from filaments, mergers, star formation and feedback, secular evolution and AM exchange between baryons and dark matter. Outer parts of galaxies are essential to study since they retain most of the AM and the diagnostics of the evolution. Galaxy IFU surveys have recently provided a wealth of kinematical information in the local universe. In the future, we can expect more statistics in the outer parts, and evolution at high z, including atomic gas with SKA.
Stellar winds govern the angular momentum evolution of solar-like stars throughout their main-sequence lifetime. The efficiency of this process depends on the geometry of the stars magnetic field. There has been a rapid increase recently in the numbe r of stars for which this geometry can be determined through spectropolarimetry. We present a computationally efficient method to determine the 3D geometry of the stellar wind and to estimate the mass loss rate and angular momentum loss rate based on these observations. Using solar magnetograms as examples, we quantify the extent to which the values obtained are affected by the limited spatial resolution of stellar observations. We find that for a typical stellar surface resolution of 20$^{rm o}$-30$^{rm o}$, predicted wind speeds are within 5$%$ of the value at full resolution. Mass loss rates and angular momentum loss rates are within 5-20$%$. In contrast, the predicted X-ray emission measures can be under-estimated by 1-2 orders of magnitude, and their rotational modulations by 10-20$%$.
High-mass X-ray binaries (HMXBs) are exceptional astrophysical laboratories that offer a rare glimpse into the physical processes that govern accretion on compact objects, massive-star winds, and stellar evolution. In a subset of the HMXBs, the compa ct objects accrete matter solely from winds of massive donor stars. These so-called wind-fed HMXBs are divided in persistent HMXBs and supergiant fast X-ray transients (SFXTs) according to their X-ray properties. While it has been suggested that this dichotomy depends on the characteristics of stellar winds, they have been poorly studied. With this investigation, we aim to remedy this situation by systematically analyzing donor stars of wind-fed HMXBs that are observable in the UV, concentrating on those with neutron star (NS) companions. We obtained Swift X-ray data, HST UV spectra, and additional optical spectra for all our targets. Our multi-wavelength approach allows us to provide stellar and wind parameters for six donor stars (four wind-fed systems and two OBe X-ray binaries). The wind properties are in line with the predictions of the line-driven wind theory. Three of the donor stars are in an advanced evolutionary stage, while for some of the stars, the abundance pattern indicates that processed material might have been accreted. When passing by the NS in its tight orbit, the donor star wind has not yet reached its terminal velocity but it is still significantly slower; its speed is comparable with the orbital velocity of the NS companion. There are no systematic differences between the two types of wind-fed HMXBs (persistent versus transients) with respect to the donor stars. For the SFXTs in our sample, the orbital eccentricity is decisive for their transient X-ray nature. Based on the orbital parameters and the further evolution of the donor stars, the investigated HMXBs will presumably form Thorne-.Zytkow objects in the future.
In this work, we simulate the evolution of the solar wind along its main sequence lifetime and compute its thermal radio emission. To study the evolution of the solar wind, we use a sample of solar mass stars at different ages. All these stars have o bservationally-reconstructed magnetic maps, which are incorporated in our 3D magnetohydrodynamic simulations of their winds. We show that angular-momentum loss and mass-loss rates decrease steadily on evolutionary timescales, although they can vary in a magnetic cycle timescale. Stellar winds are known to emit radiation in the form of thermal bremsstrahlung in the radio spectrum. To calculate the expected radio fluxes from these winds, we solve the radiative transfer equation numerically from first principles. We compute continuum spectra across the frequency range 100 MHz - 100 GHz and find maximum radio flux densities ranging from 0.05 - 8.3 $mu$Jy. At a frequency of 1 GHz and a normalised distance of d = 10 pc, the radio flux density follows 0.24 $(Omega/Omega_{odot})^{0.9}$ (d/[10pc])$^2$ $mu$Jy, where $Omega$ is the rotation rate. This means that the best candidates for stellar wind observations in the radio regime are faster rotators within distances of 10 pc, such as $kappa^1$ Ceti (2.83 $mu$Jy) and $chi^1$ Ori (8.3 $mu$Jy). These flux predictions provide a guide to observing solar-type stars across the frequency range 0.1 - 100 GHz in the future using the next generation of radio telescopes, such as ngVLA and SKA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا