ﻻ يوجد ملخص باللغة العربية
We analyze Einsteins recoiling slit experiment and point out that the inevitable entanglement between the particle and the recoiling-slit was not part of Bohrs reply. We show that if this entanglement is taken into account, one can provided a simpler answer to Einstein. We also derive the Englert-Greenberger-Yasin duality relation from this entanglement. In addition, we show that the Englert-Greenberger-Yasin duality relation can also be thought of as a consequence of the sum uncertainty relation for certain observables of the recoiling slit. Thus, the uncertainty relations and entanglement are both an integral part of the which-way detection process.
A which-way measurement in Youngs double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenbergs uncertainty principle: distinguishing two positions a distance s ap
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying
We establish a rigorous quantitative connection between (i) the interferometric duality relation for which-way information and fringe visibility and (ii) Heisenbergs uncertainty relation for position and modular momentum. We apply our theory to atom
Uncertainty relations and complementarity relations are core issues in quantum mechanics and quantum information theory. By use of the generalized Wigner-Yanase-Dyson (GWYD) skew information, we derive several uncertainty and complementarity relation
We present a unified view of the Berry phase of a quantum system and its entanglement with surroundings. The former reflects the nonseparability between a system and a classical environment as the latter for a quantum environment, and the concept of