ﻻ يوجد ملخص باللغة العربية
We study the temperature dependence of thermoelectric transport properties of four FeSb2 nanocomposite samples with different grain sizes. The comparison of the single crystals and nanocomposites of varying grain size indicates the presence of substantial phonon drag effects in this system contributing to a large Seebeck coefficient at low temperature. As the grain size decreases, the increased phonon scattering at the grain boundaries leads to a suppression of the phonon-drag effect, resulting in a much smaller peak value of the Seebeck coefficient in the nanostructured bulk materials. As a consequence, the ZT values are not improved significantly even though the thermal conductivity is drastically reduced.
Valley Hall effect is an appearance of the valley current in the direction transverse to the electric current. We develop the microscopic theory of the valley Hall effect in two-dimensional semiconductors where the electrons are dragged by the phonon
The acoustic phonon-mediated drag-contribution to the drag current created in the ballistic transport regime in a one-dimensional nanowire by phonons generated by a current-carrying ballistic channel in a nearby nanowire is calculated. The threshold
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution in the quest to realize magnetoelectric cou-pling between ferromagnetic and ferroelectric order parameters. Desp
The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the s
We study the frictional drag in high mobility, strongly interacting GaAs bilayer hole systems in the vicinity of the filling factor $ u=1$ quantum Hall state (QHS), at the same fillings where the bilayer resistivity displays a reentrant insulating ph