ﻻ يوجد ملخص باللغة العربية
With the ever increasing size and complexity of fully self-consistent simulations of galaxy formation within the framework of the cosmic web, the demands upon object finders for these simulations has simultaneously grown. To this extent we initiated the Halo Finder Comparison Project that gathered together all the experts in the field and has so far led to two comparison papers, one for dark matter field haloes (Knebe et al. 2011), and one for dark matter subhaloes (Onions et al. 2012). However, as state-of-the-art simulation codes are perfectly capable of not only following the formation and evolution of dark matter but also account for baryonic physics (e.g. hydrodynamics, star formation, feedback) object finders should also be capable of taking these additional processes into consideration. Here we report on a comparison of codes as applied to the Constrained Local UniversE Simulation (CLUES) of the formation of the Local Group which incorporates much of the physics relevant for galaxy formation. We compare both the properties of the three main galaxies in the simulation (representing the MW, M31, and M33) as well as their satellite populations for a variety of halo finders ranging from phase-space to velocity-space to spherical overdensity based codes, including also a mere baryonic object finder. We obtain agreement amongst codes comparable to (if not better than) our previous comparisons, at least for the total, dark, and stellar components of the objects. However, the diffuse gas content of the haloes shows great disparity, especially for low-mass satellite galaxies. This is primarily due to differences in the treatment of the thermal energy during the unbinding procedure. We acknowledge that the handling of gas in halo finders is something that needs to be dealt with carefully, and the precise treatment may depend sensitively upon the scientific problem being studied.
[abridged] We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends (FOF), spherical-overdensity
While various codes exist to systematically and robustly find haloes and subhaloes in cosmological simulations (Knebe et al., 2011, Onions et al., 2012), this is the first work to introduce and rigorously test codes that find tidal debris (streams an
Despite a history that dates back at least a quarter of a century studies of voids in the large--scale structure of the Universe are bedevilled by a major problem: there exist a large number of quite different void--finding algorithms, a fact that ha
We present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point and the three-point clustering statistics. The reference catalogues are drawn from the BigMultiDark N-body simulati
We introduce the AGORA project, a comprehensive numerical study of well-resolved galaxies within the LCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ~100 proper pc or better will be run with a variety of code platforms