ﻻ يوجد ملخص باللغة العربية
We explore the derivation of interatomic exchange interactions in ferromagnets within density-functional theory (DFT) and the mapping of DFT results onto a spin Hamiltonian. We delve into the problem of systems comprising atoms with strong spontaneous moments together with atoms with weak induced moments. All moments are considered as degrees of freedom, with the strong moments thermally fluctuating only in angle and the weak moments thermally fluctuating in angle and magnitude. We argue that a quadratic dependence of the energy on the weak local moments magnitude, which is a good approximation in many cases, allows for an elimination of the weak-moment degrees of freedom from the thermodynamic expressions in favor of a renormalization of the Heisenberg interactions among the strong moments. We show that the renormalization is valid at all temperatures accounting for the thermal fluctuations and resulting in temperature-independent renormalized interactions. These are shown to be the ones directly derived from total-energy DFT calculations by constraining the strong-moment directions, as is done e.g. in spin-spiral methods. We furthermore prove that within this framework the thermodynamics of the weak-moment subsystem, and in particular all correlation functions, can be derived as polynomials of the correlation functions of the strong-moment subsystem with coefficients that depend on the spin susceptibility and that can be calculated within DFT. These conclusions are rigorous under certain physical assumptions on the measure in the magnetic phase space. We implement the scheme in the full-potential linearized augmented plane wave method using the concept of spin-spiral states, considering applicable symmetry relations and the use of the magnetic force theorem. Our analytical results are corroborated by numerical calculations employing DFT and a Monte Carlo method.
In this work, we present a software package in Python for high-throughput first-principles calculations of thermodynamic properties at finite temperatures, which we refer to as DFTTK (Density Functional Theory Tool Kit). DFTTK is based on the atomate
We investigated the temperature dependence of the magnetic damping in the exchange biased Pt/ Fe50Mn50 /Fe20Ni80 /SiOx multilayers. In samples having a strong exchange bias, we observed a drastic decrease of the magnetic damping of the FeNi with incr
We revise critically existing approaches to evaluation of thermodynamic potentials within the Greens function calculations at finite electronic temperatures. We focus on the entropy and show that usual technical problems related to the multivalued na
An adiabatic-connection fluctuation-dissipation theorem approach based on a range separation of electron-electron interactions is proposed. It involves a rigorous combination of short-range density functional and long-range random phase approximation
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis