ﻻ يوجد ملخص باللغة العربية
We present a study of the three forbidden oxygen lines [OI] located in the optical region (i.e., 5577.339 r{A} (the green line), 6300.304 r{A} and 6363.776 r{A} (the two red lines)) in order to better understand the production of these atoms in cometary atmospheres. The analysis is based on 48 high-resolution and high signal-to-noise spectra collected with UVES at the ESO VLT between 2003 and 2011 referring to 12 comets of different origins observed at various heliocentric distances. The flux ratio of the green line to the sum of the two red lines is evaluated to determine the parent species of the oxygen atoms by comparison with theoretical models. This analysis confirms that, at about 1 AU, H2O is the main parent molecule producing oxygen atoms. At heliocentric distances > 2.5 AU, this ratio is changing rapidly, an indication that other molecules are starting to contribute. CO and CO2, the most abundant species after H2O in the coma, are good candidates and the ratio is used to estimate their abundances. We found that the CO2 abundance relative to H2O in comet C/2001 Q4 (NEAT) observed at 4 AU can be as high as ~70 %. The intrinsic widths of the oxygen lines were also measured. The green line is on average about 1 km/s broader than the red lines while the theory predicts the red lines to be broader. This might be due to the nature of the excitation source and/or a contribution of CO2 as parent molecule of the 5577.339 r{A} line. At 4 AU, we found that the width of the green and red lines in comet C/2001 Q4 are the same which could be explained if CO2 becomes the main contributor for the three [OI] lines at high heliocentric distances.
To study the formation of the [OI] lines - i.e., 5577 A (the green line), 6300 A and 6364 A (the two red lines) - in the coma of comets and to determine the parent species of the oxygen atoms using the green to red-doublet emission intensity ratio (G
The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on October 19, 2014 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comets dust tai
The N$_2$ and CO-rich and water-depleted comet C/2016 R2 (Pan-STARRS) (hereafter `C/2016 R2) is a unique comet for detailed spectroscopic analysis. We aim to explore the associated photochemistry of parent species, which produces different metastable
Recently, Nadir and Occultation for Mars Discovery (NOMAD) ultraviolet and visible spectrometer instrument on board the European Space Agencys ExoMars Trace Gas Orbiter (TGO) simultaneously measured the limb emission intensities for both [OI] 2972 an
A detailed study of comets active at large heliocentric distances (greater than 4 au) which enter the Solar System for the first time and are composed of matter in its elementary, unprocessed state, would help in our understanding of the history and