ﻻ يوجد ملخص باللغة العربية
The thermoelectric efficiency of semiconductors is usually considered in the ohmic electronic transport regime, which is achieved through high doping. Here we consider the opposite regime of low doping where the current-voltage characteristics are nonlinear and dominated by space-charge-limited transport. We show that in this regime, the thermoelectric efficiency can be described by a single figure of merit, in analogy with the ohmic case. Efficiencies for bulk, thin film, and nanowire materials are discussed, and it is proposed that nanowires are the most promising to take advantage of space-charge-limited transport for thermoelectrics.
We studied electric current and noise in planar GaN nanowires (NWs). The results obtained at low voltages provide us with estimates of the depletion effects in the NWs. For larger voltages, we observed the space-charge limited current (SCLC) effect.
The potential of semiconductors assembled from nanocrystals (NC semiconductors) has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectri
The current-voltage characteristics of thin wires are often observed to be nonlinear, and this behavior has been ascribed to Schottky barriers at the contacts. We present electronic transport measurements on GaN nanorods and demonstrate that the nonl
It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associat
As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its