ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding the First Cosmic Explosions II: Core-Collapse Supernovae

171   0   0.0 ( 0 )
 نشر من قبل Daniel Whalen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the properties of Pop III stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early IGM, and the origin of supermassive black holes. While the primordial IMF remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15 - 50 Ms in addition to 50 - 500 Ms. The detection of Pop III supernovae by JWST, WFIRST or the TMT could directly probe the primordial IMF for the first time. We present numerical simulations of 15 - 40 Ms Pop III core-collapse SNe done with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z ~ 10 - 15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II supernovae by next-generation NIR instruments will in general be limited to this epoch.



قيم البحث

اقرأ أيضاً

The first stars are the key to the formation of primitive galaxies, early cosmological reionization and chemical enrichment, and the origin of supermassive black holes. Unfortunately, in spite of their extreme luminosities, individual Population III stars will likely remain beyond the reach of direct observation for decades to come. However, their properties could be revealed by their supernova explosions, which may soon be detected by a new generation of NIR observatories such as JWST and WFIRST. We present light curves and spectra for Pop III pair-instability supernovae calculated with the Los Alamos radiation hydrodynamics code RAGE. Our numerical simulations account for the interaction of the blast with realistic circumstellar envelopes, the opacity of the envelope, and Lyman absorption by the neutral IGM at high redshift, all of which are crucial to computing the NIR signatures of the first cosmic explosions. We find that JWST will detect pair-instability supernovae out to z > 30, WFIRST will detect them in all-sky surveys out to z ~ 15 - 20 and LSST and Pan-STARRS will find them at z ~ 7 - 8. The discovery of these ancient explosions will probe the first stellar populations and reveal the existence of primitive galaxies that might not otherwise have been detected.
Population III stars that die as pair-instability supernovae are usually thought to fall in the mass range of 140 - 260 M$_{odot}$. But several lines of work have now shown that rotation can build up the He cores needed to encounter the pair instabil ity at stellar masses as low as 90 $_{odot}$. Depending on the slope of the initial mass function of Population III stars, there could be 4 - 5 times as many stars from 90 - 140 $_{odot}$ in the primordial universe than in the usually accepted range. We present numerical simulations of the pair-instability explosions of such stars performed with the MESA, FLASH and RAGE codes. We find that they will be visible to supernova factories such as Pan-STARRS and LSST in the optical out to z $sim$ 1 - 2 and to JWST and the 30 m-class telescopes in the NIR out to $z sim$ 7 - 10. Such explosions will thus probe the stellar populations of the first galaxies and cosmic star formation rates in the era of cosmological reionization. These supernovae are also easily distinguished from more massive pair-instability explosions, underscoring the fact that there is far greater variety to the light curves of these events than previously understood.
In a previously presented proof-of-principle study we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae. The present paper goes beyond a specific application that is able to reproduce observational properties of SN1987A and performs a systematic study of the explosion properties for an extensive set of non-rotating, solar metallicity stellar progenitor models in the mass range from 10.8 to 120 M$_odot$.This includes the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae and faint/failed supernovae. The present paper provides the basis for extended nucleosynthesis predictions in a forthcoming paper to be employed in galactic evolution models.
68 - V. Dwarkadas 2019
Core-collapse supernovae produce fast shocks which expand into the dense circumstellar medium (CSM) of the stellar progenitor. Cosmic rays (CRs) accelerated at these shocks can induce the growth of electromagnetic fluctuations in the pre-shock medium . Using a self-similar description for the shock evolution, we calculate the growth time-scales of CR driven instabilities for SNe in general, and SN 1993J in particular. We find that extended SN shocks can trigger fast intra-day instabilities, strong magnetic field amplification, and CR acceleration. In particular, the non-resonant streaming instability can contribute to about 50 per cent of the magnetic field intensity deduced from radio data. This results in the acceleration of CR particles to energies of 1-10 PeV within a few days after the shock breakout.
Core collapse supernovae (CCSNe) produce fast shocks which pervade the dense circum-stellar medium (CSM) of the stellar progenitor. Cosmic rays (CRs) if accelerated at these shocks can induce the growth of electromagnetic fluctuations in the foreshoc k medium. In this study, using a self-similar description of the shock evolution, we calculate the growth timescales of CR-driven instabilities. We select a sample of nearby core collapse radio supernova of type II and Ib/Ic. From radio data we infer the parameters which enter in the calculation of the instability growth times. We find that extended IIb SNe shocks can trigger fast intra day instabilities, strong magnetic field amplification and CR acceleration. In particular, the non-resonant streaming instability can contribute to about 50% of the magnetic field intensity deduced from radio data. This results in the acceleration of CRs in the range 1-10 PeV within a few days after the shock breakout. In order to produce strong magnetic field amplification and CR acceleration a fast shocks pervading a dense CSM is necessary. In that aspect IIn supernovae~are also good candidates. But a detailed modeling of the blast wave dynamics coupled with particle acceleration is mandatory for this class of object before providing any firm conclusions. Finally, we find that the trans-relativistic object SN 2009bb even if it produces more modest magnetic field amplification can accelerate CRs up to 2-3 PeV within 20 days after the outburst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا