ﻻ يوجد ملخص باللغة العربية
Symmetry reduction by the method of slices quotients the continuous symmetries of chaotic flows by replacing the original state space by a set of charts, each covering a neighborhood of a dynamically important class of solutions, qualitatively captured by a `template. Together these charts provide an atlas of the symmetry-reduced `slice of state space, charting the regions of the manifold explored by the trajectories of interest. Within the slice, relative equilibria reduce to equilibria and relative periodic orbits reduce to periodic orbits. Visualizations of these solutions and their unstable manifolds reveal their interrelations and the role they play in organizing turbulence/chaos.
We present two continuous symmetry reduction methods for reducing high-dimensional dissipative flows to local return maps. In the Hilbert polynomial basis approach, the equivariant dynamics is rewritten in terms of invariant coordinates. In the metho
Geometrization of dynamics consists of representing trajectories by geodesics on a configuration space with a suitably defined metric. Previously, efforts were made to show that the analysis of dynamical stability can also be carried out within geome
This paper presents a general and systematic discussion of various symbolic representations of iterated maps through subshifts. We give a unified model for all continuous maps on a metric space, by representing a map through a general subshift over u
We provide evidence of an extreme form of sensitivity to initial conditions in a family of one-dimensional self-ruling dynamical systems. We prove that some hyperchaotic sequences are closed-form expressions of the orbits of these pseudo-random dynam
We consider the problem of enumerating d-irreducible maps, i.e. planar maps whose all cycles have length at least d, and such that any cycle of length d is the boundary of a face of degree d. We develop two approaches in parallel: the natural approac