ترغب بنشر مسار تعليمي؟ اضغط هنا

Unique Astrophysics in the Lyman Ultraviolet

156   0   0.0 ( 0 )
 نشر من قبل Jason Tumlinson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jason Tumlinson




اسأل ChatGPT حول البحث

There is unique and groundbreaking science to be done with a new generation of UV spectrographs that cover wavelengths in the Lyman Ultraviolet (LUV; 912 - 1216 Ang). There is no astrophysical basis for truncating spectroscopic wavelength coverage anywhere between the atmospheric cutoff (3100 Ang) and the Lyman limit (912 Ang); the usual reasons this happens are all technical. The unique science available in the LUV includes critical problems in astrophysics ranging from the habitability of exoplanets to the reionization of the IGM. Crucially, the local Universe (z <= 0.1) is entirely closed to many key physical diagnostics without access to the LUV. These compelling scientific problems require overcoming these technical barriers so that future UV spectrographs can extend coverage to the Lyman limit at 912 Ang.



قيم البحث

اقرأ أيضاً

Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.
Alongside future observations with the new European Extremely Large Telescope (ELT), optimised instruments on the 8-10m generation of telescopes will still be competitive at ground UV wavelengths (3000-4000 A). The near UV provides a wealth of unique information on the nucleosynthesis of iron-peak elements, molecules, and neutron-capture elements. In the context of development of the near-UV CUBES spectrograph for ESOs Very Large Telescope (VLT), we are investigating the impact of spectral resolution on the ability to estimate chemical abundances for beryllium and more than 30 iron-peak and heavy elements. From work ahead of the Phase A conceptual design of CUBES, here we present a comparison of the elements observable at the notional resolving power of CUBES (R~20,000) to those with VLT-UVES (R~40,000). For most of the considered lines signal-to-noise is a more critical factor than resolution. We summarise the elements accessible with CUBES, several of which (e.g. Be, Ge, Hf) are now the focus of quantitative simulations as part of the ongoing Phase A study.
With this paper we participate to the call for ideas issued by the European Space Agency to define the Science Program and plan for space missions from 2035 to 2050. In particular we present five science cases where major advancements can be achieved thanks to space-based spectroscopic observations at ultraviolet (UV) wavelengths. We discuss the possibility to (1) unveil the large-scale structures and cosmic web in emission at redshift <~1.7; (2) study the exchange of baryons between galaxies and their surroundings to understand the contribution of the circumgalactic gas to the evolution and angular-momentum build-up of galaxies; (3) constrain the efficiency of ram-pressure stripping in removing gas from galaxies and its role in quenching star formation; (4) characterize the progenitor population of core-collapse supernovae to reveal the explosion mechanisms of stars; (5) target accreting white dwarfs in globular clusters to determine their evolution and fate. These science themes can be addressed thanks to UV (wavelength range lambda ~ 90 - 350 nm) observations carried out with a panoramic integral field spectrograph (field of view ~ 1 x 1 arcmin^2 ), and medium spectral (R = 4000) and spatial (~ 1 - 3) resolution. Such a UV-optimized instrument will be unique in the coming years, when most of the new large facilities such as the Extremely Large Telescope and the James Webb Space Telescope are optimized for infrared wavelengths.
Observations of astronomical objects in the far ultraviolet (FUV wavelengths span 900-1800{AA}) from earths orbit has been impeded due to bright Lyman-{alpha} geocoronal emission. The Johns Hopkins Rocket Group is developing a hydrogen absorption cel l that would act as a narrow band Lyman-{alpha} rejection filter to enable space-based photometric observation in bandpasses that span over the Lyman ultraviolet region shortward of the geocoronal line. While this technology has been applied to various planetary missions with single element photomultiplier detectors it has yet to be used on near earth orbiting satellites with a multi-element detector. We are working to develop a cell that could be easily incorporated into future Lyman ultraviolet missions. The prototype cell is a low-pressure (~ few torr) chamber sealed between a pair of MgF2 windows allowing transmission down to 1150 {AA}. It is filled with molecular hydrogen that is converted to its neutral atomic form in the presence of a hot tungsten filament, which allows for the absorption of the Lyman-{alpha} photons. Molecular hydrogen is stored in a fully saturated non-evaporable getter module (St707TM), which allows the cell pressure to be increased under a modest application of heat (a 20 degree rise from room temperature has produced a rise in pressure from 0.6 to 10 torr). Testing is now underway using a vacuum ultraviolet monochromator to characterize the cell optical depth to Lyman-{alpha} photons as functions of pressure and tungsten filament current. We will present these results, along with a discussion of enabled science in broadband photometric applications.
NASAs WFIRST mission will perform a wide-field, NIR survey of the Galactic Bulge to search for exoplanets via the microlensing techniques. As the mission is due to launch in the mid-2020s, around half-way through the LSST Main Survey, we have a uniqu e opportunity to explore synergistic science from two landmark programs. LSST can survey the entire footprint of the WFIRST microlensing survey in a single Deep Drilling Field. Here we explore the great scientific potential of this proposal and recommend the most effective observing strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا