ﻻ يوجد ملخص باللغة العربية
Observing programs comprising multiple scientific objectives will enhance the productivity of NASAs next UV/Visible mission. Studying active galactic nuclei (AGN) is intrinsically important for understanding how black holes accrete matter, grow through cosmic time, and influence their host galaxies. At the same time, the bright UV continuum of AGN serves as an ideal background light source for studying foreground gas in the intergalactic medium (IGM), the circumgalactic medium (CGM) of individual galaxies, and the interstellar medium (ISM) and halo of the Milky Way. A well chosen sample of AGN can serve as the observational backbone for multiple spectroscopic investigations including quantitative measurements of outflows from AGN, the structure of their accretion disks, and the mass of the central black hole.
There has been a growing body of evidence to suggest that AGN activity, which is powered by mass accretion on to a supermasive black hole, could be episodic, although the range of time scales involved needs to be explored further. The structure and s
There is increasing evidence to suggest that AGN activity may be episodic, with a wide range of possible time scales. Radio galaxies exhibit the most striking examples of episodic activity, with two or three distinct pairs of lobes on opposite sides
We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z ~ 2-3. The rest-frame UV composite spectrum for our AGN sample shows s
We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2-10 keV X-ray flux from the XMM-COSMOS survey, in the redshift range 0.3<z<3.5. We classify the AGN as obscured or un-obscured o
The highly energetic outflows from Active Galactic Nuclei detected in X-rays are one of the most powerful mechanisms by which the central supermassive black hole (SMBH) interacts with the host galaxy. The last two decades of high resolution X-ray spe