ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold collisions of polyatomic molecular radicals with S-state atoms in a magnetic field: An ab initio study of He + CH2(X) collisions

108   0   0.0 ( 0 )
 نشر من قبل Timur Tscherbul
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the multichannel scattering wavefunction. Explicit expressions are presented for the matrix elements of the scattering Hamiltonian for spin-1/2 and spin-1 polyatomic molecular radicals interacting with structureless targets. The theory is applied to calculate the cross sections and thermal rate constants for spin relaxation in low-temperature collisions of the prototypical organic molecule methylene [CH2(X)] with He atoms. To this end, two highly accurate three-dimensional potential energy surfaces (PESs) of the He-CH2(X) complex are developed using the state-of-the-art CCSD(T) method and large basis sets. Both PESs exhibit shallow minima and are weakly anisotropic. Our calculations show that spin relaxation in collisions of CH2, CHD, and CD2 molecules with He atoms occurs at a much slower rate than elastic scattering over a large range of temperatures (1 uK -- 1 K) and magnetic fields (0.01 - 1 T), suggesting excellent prospects for cryogenic helium buffer-gas cooling of ground-state ortho-CH2(X) molecules in a magnetic trap. Furthermore, we find that ortho-CH2 undergoes collision-induced spin relaxation much more slowly than para-CH2, which indicates that magnetic trapping can be used to separate nuclear spin isomers of open-shell polyatomic molecules.



قيم البحث

اقرأ أيضاً

We study collisions between neutral, deuterated ammonia molecules (ND$_3$) stored in a 50 cm diameter synchrotron and argon atoms in co-propagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By stori ng ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) The collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross-section for $mathrm{ND}_3+mathrm{Ar}$ collisions in the energy range of 40-140 cm$^{-1}$, with a resolution of 5-10 cm$^{-1}$ and an uncertainty of 7-15%. Our measurements are in good agreement with theoretical scattering calculations.
We present an experimental study on the rotational inelastic scattering of OH ($X^2Pi_{3/2}, J=3/2, f$) radicals with He and D$_2$ at collision energies between 100 and 500 cm$^{-1}$ in a crossed beam experiment. The OH radicals are state selected an d velocity tuned using a Stark decelerator. Relative parity-resolved state-to-state inelastic scattering cross sections are accurately determined. These experiments complement recent low-energy collision studies between trapped OH radicals and beams of He and D$_2$ that are sensitive to the total (elastic and inelastic) cross sections (Sawyer emph{et al.}, emph{Phys. Rev. Lett.} textbf{2008}, emph{101}, 203203), but for which the measured cross sections could not be reproduced by theoretical calculations (Pavlovic emph{et al.}, emph{J. Phys. Chem. A} textbf{2009}, emph{113}, 14670). For the OH-He system, our experiments validate the inelastic cross sections determined from rigorous quantum calculations.
Whereas atom-molecule collisions have been studied with complete quantum state resolution, interactions between two state-selected molecules have proven much harder to probe. Here, we report the measurement of state-resolved inelastic scattering cros s sections for collisions between two open-shell molecules that are both prepared in a single quantum state. Stark-decelerated OH radicals were scattered with hexapole-focused NO radicals in a crossed beam configuration. Rotationally and spin-orbit inelastic scattering cross sections were measured on an absolute scale for collision energies between 70 and 300 cm$^{-1}$. These cross sections show fair agreement with quantum coupled-channels calculations using a set of coupled model potential energy surfaces based on ab initio calculations for the long-range non-adiabatic interactions and a simplistic short-range interaction. This comparison reveals the crucial role of electrostatic forces in complex molecular collision processes.
Radium compounds have attracted recently considerable attention due to both development of experimental techniques for high-precision laser spectroscopy of molecules with short-lived nuclei and amenability of certain radium compounds for direct cooli ng with lasers. Currently, radium monofluoride (RaF) is one of the most studied molecules among the radium compounds, both theoretically and recently also experimentally. Complementary studies of further diatomic radium derivatives are highly desired to assess the influence of chemical substitution on diverse molecular parameters, especially on those connected with laser cooling, such as vibronic transition probabilities, and those related to violations of fundamental symmetries. In this article high-precision emph{ab initio} studies of electronic and vibronic levels of diatomic radium monochloride (RaCl) are presented. Recently developed approaches for treating electronic correlation with Fock-space coupled cluster methods are applied for this purpose. Theoretical results are compared to an early experimental investigation by Lagerqvist and used to partially reassign the experimentally observed transitions and molecular electronic levels of RaCl. Effective constants of $mathcal{P}$-odd hyperfine interaction $W_{rm{a}}$ and $mathcal{P,T}$-odd scalar-pseudoscalar nucleus-electron interaction $W_{rm{s}}$ in the ground electronic state of RaCl are estimated within the framework of a quasirelativistic Zeroth-Order Regular Approximation approach and compared to parameters in RaF and RaOH.
The relative orientation of colliding molecules plays a key role in determining the rates of chemical processes. Here we examine in detail a prototypical example: rotational quenching of HD in cold collisions with H2. We show that the rotational quen ching rate from j=2 -> 0, in the v=1 vibrational level, can be maximized by aligning the HD along the collision axis and can be minimized by aligning the HD at the so called magic angle. This follows from quite general helicity considerations and suggests that quenching rates for other similar systems can also be controlled in this manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا