ﻻ يوجد ملخص باللغة العربية
Chaotic dynamics with sensitive dependence on initial conditions may result in exponential decay of correlation functions. We show that for one-dimensional interval maps the corresponding quantities, that is, Lyapunov exponents and exponential decay rates are related. For piecewise linear expanding Markov maps observed via piecewise analytic functions we provide explicit bounds of the decay rate in terms of the Lyapunov exponent. In addition, we comment on similar relations for general piecewise smooth expanding maps.
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashin
Two quantitative notions of mixing are the decay of correlations and the decay of a mix-norm -- a negative Sobolev norm -- and the intensity of mixing can be measured by the rates of decay of these quantities. From duality, correlations are uniformly
In an algebraic family of rational maps of $mathbb{P}^1$, we show that, for almost every parameter for the trace of the bifurcation current of a marked critical value, the critical value is Collet-Eckmann. This extends previous results of Graczyk and
We establish that the entropy production rate of a classically chaotic Hamiltonian system coupled to the environment settles, after a transient, to a meta-stable value given by the sum of positive generalized Lyapunov exponents. A meta-stable steady
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can