ترغب بنشر مسار تعليمي؟ اضغط هنا

A descent spectral sequence for arbitrary K(n)-local spectra with explicit $E_2$-term

92   0   0.0 ( 0 )
 نشر من قبل Daniel Davis
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let n be any positive integer and p any prime. Also, let X be any spectrum and let K(n) denote the nth Morava K-theory spectrum. Then we construct a descent spectral sequence with abutment pi_*(L_{K(n)}(X)) and E_2-term equal to the continuous cohomology of G_n, the extended Morava stabilizer group, with coefficients in a certain discrete G_n-module that is built from various homotopy fixed point spectra of the Morava module of X. This spectral sequence can be contrasted with the K(n)-local E_n-Adams spectral sequence for pi_*(L_{K(n)}(X)), whose E_2-term is not known to always be equal to a continuous cohomology group.



قيم البحث

اقرأ أيضاً

98 - Hana Jia Kong 2020
We construct a $C_2$-equivariant spectral sequence for RO$(C_2)$-graded homotopy groups. The construction is by using the motivic effective slice filtration and the $C_2$-equivariant Betti realization. We apply the spectral sequence to compute the RO $(C_2)$-graded homotopy groups of the completed $C_2$-equivariant connective real $K$-theory spectrum. The computation reproves the $C_2$-equivariant Adams spectral sequence results by Guillou, Hill, Isaksen and Ravenel.
107 - Guozhen Wang , Zhouli Xu 2016
In this note, we use Curtiss algorithm and the Lambda algebra to compute the algebraic Atiyah-Hirzebruch spectral sequence of the suspension spectrum of $mathbb{R}P^infty$ with the aid of a computer, which gives us its Adams $E_2$-page in the range o f $t<72$. We also compute the transfer map on the Adams $E_2$-pages. These data are used in our computations of the stable homotopy groups of $mathbb{R}P^infty$ in [6] and of the stable homotopy groups of spheres in [7].
209 - Daniel G. Davis 2008
If C is the model category of simplicial presheaves on a site with enough points, with fibrations equal to the global fibrations, then it is well-known that the fibrant objects are, in general, mysterious. Thus, it is not surprising that, when G is a profinite group, the fibrant objects in the model category of discrete G-spectra are also difficult to get a handle on. However, with simplicial presheaves, it is possible to construct an explicit fibrant model for an object in C, under certain finiteness conditions. Similarly, in this paper, we show that if G has finite virtual cohomological dimension and X is a discrete G-spectrum, then there is an explicit fibrant model for X. Also, we give several applications of this concrete model related to closed subgroups of G.
In their work on the period map and the dualizing sheaf for Lubin-Tate space, Gross and the second author wrote down an equivalence between the Spanier-Whitehead and Brown-Comenetz duals of certain type $n$-complexes in the $K(n)$-local category at l arge primes. In the culture of the time, these results were accessible to educated readers, but this seems no longer to be the case; therefore, in this note we give the details. Because we are at large primes, the key result is algebraic: in the Picard group of Lubin-Tate space, two important invertible sheaves become isomorphic modulo $p$.
We compute the Picard group of the category of $K(2)$-local module spectra over the ring spectrum $E^{hC_4}$, where $E$ is a height 2 Morava $E$-theory and $C_4$ is a subgroup of the associated Morava stabilizer group. This group can be identified wi th the Picard group of $K(2)$-local $E$-modules in genuine $C_4$-spectra. We show that in addition to a cyclic subgroup of order 32 generated by $ Ewedge S^1$ the Picard group contains a subgroup of order 2 generated by $Ewedge S^{7+sigma}$, where $sigma$ is the sign representation of the group $C_4$. In the process, we completely compute the $RO(C_4)$-graded Mackey functor homotopy fixed point spectral sequence for the $C_4$-spectrum $E$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا