ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of Zeeman gradients by nuclear polarization in double quantum dots

112   0   0.0 ( 0 )
 نشر من قبل Sergey Frolov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the $g$-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.



قيم البحث

اقرأ أيضاً

We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov erhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called dark states, and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.
We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyperfine interactions for a single electron confined within a double quantum dot. A simple toy model incorporating both direct decay to the ground state of the doubl e dot and indirect decay via an intermediate excited state yields an electron spin relaxation rate that varies non-monotonically with the detuning between the dots. We confirm this model with experiments performed on a GaAs double dot, demonstrating that the relaxation rate exhibits the expected detuning dependence and can be electrically tuned over several orders of magnitude. Our analysis suggests that spin-orbit mediated relaxation via phonons serves as the dominant mechanism through which the double-dot electron spin-flip rate varies with detuning.
We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our c alculations are based on a master equation where quantum interference enters as non-diagonal elements of the density matrix of the double quantum dots. We also show that many results have a physically intuitive meaning when recasting our equations as Bloch-like equations for a pseudo spin associated with the dot occupation. In the perfectly symmetric configuration with equal tunnel couplings and orbital energies of both dots, there is no unique stationary state density matrix. Interestingly, however, adding arbitrarily small symmetry-breaking terms to the tunnel couplings or orbital energies stabilizes a stationary state either with or without quantum interference, depending on the competition between these two perturbations. The different solutions can correspond to very different current levels. Therefore, if the orbital energies and/or tunnel couplings are controlled by, e.g., electrostatic gating, the double quantum dot can act as an exceptionally sensitive electric switch.
The central-spin problem, in which an electron spin interacts with a nuclear spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear polarization (DNP) occurs in central spin systems when electronic angular momentum is transferre d to nuclear spins and is exploited in spin-based quantum information processing for coherent electron and nuclear spin control. However, the mechanisms limiting DNP remain only partially understood. Here, we show that spin-orbit coupling quenches DNP in a GaAs double quantum dot, even though spin-orbit coupling in GaAs is weak. Using Landau-Zener sweeps, we measure the dependence of the electron spin-flip probability on the strength and direction of in-plane magnetic field, allowing us to distinguish effects of the spin-orbit and hyperfine interactions. To confirm our interpretation, we measure high-bandwidth correlations in the electron spin-flip probability and attain results consistent with a significant spin-orbit contribution. We observe that DNP is quenched when the spin-orbit component exceeds the hyperfine, in agreement with a theoretical model. Our results shed new light on the surprising competition between the spin-orbit and hyperfine interactions in central-spin systems.
Early experiments on spin-blockaded double quantum dots revealed surprising robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias [see e.g. K. Ono, S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004)]. Experimenta l evidence strongly indicates that dynamical nuclear polarization plays a central role, but the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports robust self-sustained oscillations. Our mechanism relies on a nuclear-spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The extremely long oscillation periods (up to hundreds of seconds) observed in experiments as well as the differences in phenomenology between vertical and lateral quantum dot structures are naturally explained in the proposed framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا