ترغب بنشر مسار تعليمي؟ اضغط هنا

Halo Occupation Distribution Modeling of Green Valley Galaxies

364   0   0.0 ( 0 )
 نشر من قبل Elisabeth Krause
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a clustering analysis of near ultraviolet (NUV) - optical color selected luminosity bin samples of green valley galaxies. These galaxy samples are constructed by matching the Sloan Digital Sky Survey Data Release 7 with the latest Galaxy Evolution Explorer source catalog which provides NUV photometry. We present cross-correlation function measurements and determine the halo occupation distribution of these transitional galaxies using a new multiple tracer analysis technique. We extend the halo-occupation formalism to model the cross-correlation function between a galaxy sample of interest and multiple tracer populations simultaneously. This method can be applied to commonly used luminosity threshold samples as well as to color and luminosity bin selected galaxy samples, and improves the accuracy of clustering analyses for sparse galaxy populations. We confirm the previously observed trend that red galaxies reside in more massive halos and are more likely to be satellite galaxies than average galaxies of similar luminosity. While the change in central galaxy host mass as a function of color is only weakly constrained, the satellite fraction and characteristic halo masses of green satellite galaxies are found to be intermediate between those of blue and red satellite galaxies.



قيم البحث

اقرأ أيضاً

We present a clustering analysis of ~60,000 massive (stellar mass Mstar > 10^{11} Msun) galaxies out to z = 1 drawn from 55.2 deg2 of the UKIRT Infrared Deep Sky Survey (UKIDSS) and the Sloan Digital Sky Survey (SDSS) II Supernova Survey. Strong clus tering is detected for all the subsamples of massive galaxies characterized by different stellar masses (Mstar = 10^{11.0-11.5} Msun, 10^{11.5-12.0} Msun) or rest-frame colors (blue: U - V < 1.0, red: U - V > 1.0). We find that more mature (more massive or redder) galaxies are more clustered, which implies that more mature galaxies have started stellar-mass assembly earlier within the highly-biased region where the structure formation has also started earlier. By means of halo occupation distribution (HOD) models fitted to the observed angular correlation function, we infer the properties of the underlying host dark halos. We find that the estimated bias factors and host halo masses are systematically larger for galaxies with larger stellar masses, which is consistent with the general agreement that the capability of hosting massive galaxies depends strongly on halo mass. The estimated effective halo masses are ~10^{14} Msun, which gives the stellar-mass to halo-mass ratios of ~0.003. The observed evolution of bias factors indicates rapid evolution of spatial distributions of cold dark matter relative to those traced by the massive galaxies, while the transition of host halo masses might imply that the fractional mass growth rate of halos is less than those of stellar systems. The inferred halo masses and high fractions of central galaxies indicate that the massive galaxies in the current sample are possibly equivalent to central galaxies of galaxy clusters.
334 - Zheng Zheng 2009
We perform Halo Occupation Distribution (HOD) modeling to interpret small-scale and intermediate-scale clustering of 35,000 luminous early-type galaxies and their cross-correlation with a reference imaging sample of normal L* galaxies in the Sloan Di gital Sky Survey. The modeling results show that most of these luminous red galaxies (LRGs) are central galaxies residing in massive halos of typical mass M ~ a few times 10^13 to 10^14 Msun/h, while a few percent of them have to be satellites within halos in order to produce the strong auto-correlations exhibited on smaller scales. The mean luminosity Lc of central LRGs increases with the host halo mass, with a rough scaling relation of Lc propto M^0.5. The halo mass required to host on average one satellite LRG above a luminosity threshold is found to be about 10 times higher than that required to host a central LRG above the same threshold. We find that in massive halos the distribution of L* galaxies roughly follows that of the dark matter and their mean occupation number scales with halo mass as M^1.5. The HOD modeling results also allows for an intuitive understanding of the scale-dependent luminosity dependence of the cross-correlation between LRGs and L_* galaxies. Constraints on the LRG HOD provide tests to models of formation and evolution of massive galaxies, and they are also useful for cosmological parameter investigations. In one of the appendices, we provide LRG HOD parameters with dependence on cosmology inferred from modeling the two-point auto-correlation functions of LRGs.
We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanni ng a redshift range of $0.007 < z < 0.037$, with a median $z=0.024$, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of $b=1.04^{+0.10}_{-0.11}$, which corresponds to a typical host dark matter halo mass of $M_{rm h}^{rm typ}=12.84^{+0.22}_{-0.30},h^{-1} M_{odot}$. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4$sigma$ and 4.0$sigma$ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.
436 - Takamitsu Miyaji 2010
This is the second paper of a series that reports on our investigation of the clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies (LRGs) in the redshift range 0.16<z<0.36 that was calculated in paper I. In our HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of the AGNs by a model fit to the CCF. For the first time, we are able to go beyond quoting merely a `typical AGN host halo mass, M_h, and model the full distribution function of AGN host dark matter halos. In addition, we are able to determine the large-scale bias and the mean M_h more accurately. We explore the behavior of three simple HOD models. Our first model (Model A) is a truncated power-law HOD model in which all AGNs are satellites. With this model, we find an upper limit to the slope (alpha) of the AGN HOD that is far below unity. The other two models have a central component, which has a step function form, where the HOD is constant above a minimum mass, without (Model B) or with (Model C) an upper mass cutoff, in addition to the truncated power-law satellite component, similar to the HOD that is found for galaxies. In these two models we find the upper limits of alpha < 0.95 and alpha < 0.84 for Model B and C respectively. Our analysis suggests that the satellite AGN occupation increases slower than, or may even decrease with, M_h, in contrast to the satellites HODs of luminosity-threshold samples of galaxies, which, in contrast, grow approximately as propto M_h^alpha with alphaapprox 1. These results are consistent with observations that the AGN fraction in groups and clusters decreases with richness.
72 - Jaehong Park 2015
We investigate the clustering of Lyman-break galaxies (LBGs) at $zsim4$. Using the hierarchical galaxy formation model GALFORM, we predict, for the first time using a semi-analytical model with feedback from active galactic nuclei (AGN), the angular correlation function (ACF) of LBGs and find agreement within $3,sigma$ with new measurements of the ACF from surveys including the Hubble eXtreme Deep Field (XDF) and CANDELS field. Our simulations confirm the conclusion reached using independent models that although the predicted ACFs reproduce the trend of increased clustering with luminosity, the dependence is less strong than observed. We find that for the detection limits of the XDF field central LBGs at $zsim 4$ predominantly reside in haloes of mass $sim 10^{11}-10^{12}h^{-1}M_{rm odot}$ and that satellites reside in larger haloes of mass $sim 10^{12}-10^{13}h^{-1}M_{rm odot}$. The model predicts fewer bright satellite LBGs at $zsim4$ than is inferred from measurements of the ACF at small scales. By analysing the halo occupation distribution (HOD) predicted by the model, we find evidence that AGN feedback affects the HOD of central LBGs in massive haloes. This is a new high-redshift test of this important feedback mechanism. We investigate the effect of photometric errors in the observations on the ACF predictions. We find that the observational uncertainty in the galaxy luminosity reduces the clustering amplitude and that this effect increases towards faint galaxies, particularly on small scales. To compare properties of model with observed LBGs this uncertainty must be considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا