ﻻ يوجد ملخص باللغة العربية
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400{deg}C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (Epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about ~43 microns after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure.
Due to the mechanical and inertness properties of the Epsilon phase, its formation as a compact monolayer is most wanted in plasma surface treatments of steels. This phase can be obtained by the inclusion of carbon species in the plasma. In this work
The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are of
The modification of steel (AISI 316L and AISI 4140) surface morphology and underlying inter-crystalline grains strain due to Xe$^+$ ion bombardment are reported to affect nitrogen diffusion after a pulsed plasma nitriding process. The ion bombardment
In this paper we report the effect of hydrogen on the structural properties of AISI-H13 steel nitrogen-implanted samples in low oxygen partial pressure atmosphere. The samples were implanted in a high vacuum chamber by using a broad ion beam source.
The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used