ﻻ يوجد ملخص باللغة العربية
Recently, dynamical mean field theory calculations have shown that kinks emerge in the real part of the self energy of strongly correlated metals close to the Fermi level. This gives rise to a similar behavior in the quasi-particle dispersion relation as well as in the electronic specific heat. Since f-electron systems are even more strongly correlated than the -hitherto studied- d-electron systems we apply the dynamical mean field approach with the numerical renormalization group method as impurity solver to study whether there are kinks in the periodic Anderson model.
The Kondo and Periodic Anderson Model (PAM) are known to provide a microscopic picture of many of the fundamental properties of heavy fermion materials and, more generally, a variety of strong correlation phenomena in $4f$ and $5f$ systems. In this p
Motivated by recent photoemission and pump-probe experiments, we report determinant Quantum Monte Carlo simulations of hybridization fluctuations in the half-filled periodic Anderson model. A tentative phase diagram is constructed based solely on hyb
We report a Determinant Quantum Monte Carlo investigation which quantifies the behavior of the susceptibility and the entropy in the framework of the periodic Anderson model (PAM), focussing on the evolution with different degree of conduction electr
A central feature of the Periodic Anderson Model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization $V$, and singlet formation at large $V
The low-temperature transport coefficients of the degenerate periodic SU(N) Anderson model are calculated in the limit of infinite correlation between {it f} electrons, within the framework of dynamical mean-field theory. We establish the Fermi liqui