ترغب بنشر مسار تعليمي؟ اضغط هنا

Lindblad theory of dynamical decoherence of quantum-dot excitons

622   0   0.0 ( 0 )
 نشر من قبل Paul Eastham
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Bloch-Redfield-Wangsness theory to calculate the effects of acoustic phonons in coherent control experiments, where quantum-dot excitons are driven by shaped laser pulses. This theory yields a generalized Lindblad equation for the density operator of the dot, with time-dependent damping and decoherence due to phonon transitions between the instantaneous dressed states. It captures similar physics to the form recently applied to Rabi oscillation experiments [A. J. Ramsay et al., Phys. Rev. Lett. 104, 017402 (2010)], but guarantees positivity of the density operator. At sufficiently low temperatures, it gives results equivalent to those of fully non-Markovian approaches [S. Luker et al., Phys. Rev. B 85, 121302 (2012)], but is significantly simpler to simulate. Several applications of this theory are discussed. We apply it to adiabatic rapid passage experiments, and show how the pulses can be shaped to maximize the probability of creating a single exciton using a frequency-swept laser pulse. We also use this theory to propose and analyze methods to determine the phonon density of states experimentally, i.e. phonon spectroscopy, by exploring the dependence of the effective damping rates on the driving field.



قيم البحث

اقرأ أيضاً

We present a theoretical model for the dynamics of an electron that gets trapped by means of decoherence and quantum interference in the central quantum dot (QD) of a semiconductor nanoring (NR) made of five QDs, between 100 K and 300 K. The electron s dynamics is described by a master equation with a Hamiltonian based on the tight-binding model, taking into account electron-LO phonon interaction (ELOPI). Based on this configuration, the probability to trap an electron with no decoherence is almost 27%. In contrast, the probability to trap an electron with decoherence is 70% at 100 K, 63% at 200 K and 58% at 300 K. Our model provides a novel method of trapping an electron at room temperature.
The decoherence of mixed electron-nuclear spin qubits is a topic of great current importance, but understanding is still lacking: while important decoherence mechanisms for spin qubits arise from quantum spin bath environments with slow decay of corr elations, the only analytical framework for explaining observed sharp variations of decoherence times with magnetic field is based on the suppression of classical noise. Here we obtain a general expression for decoherence times of the central spin system which exposes significant differences between quantum-bath decoherence and decoherence by classical field noise. We perform measurements of decoherence times of bismuth donors in natural silicon using both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) transitions, and in both cases find excellent agreement with our theory across a wide parameter range. The universality of our expression is also tested by quantitative comparisons with previous measurements of decoherence around `optimal working points or `clock transitions where decoherence is strongly suppressed. We further validate our results by comparison to cluster expansion simulations.
Different approaches in quantifying environmentally-induced decoherence are considered. We identify a measure of decoherence, derived from the density matrix of the system of interest, that quantifies the environmentally induced error, i.e., deviatio n from the ideal isolated-system dynamics. This measure can be shown to have several useful features. Its behavior as a function of time has no dependence on the initial conditions, and is expected to be insensitive to the internal dynamical time scales of the system, thus only probing the decoherence-related time dependence. For a spin-boson model - a prototype of a qubit interacting with environment - we also demonstrate the property of additivity: in the regime of the onset of decoherence, the sum of the individual qubit error measures provides an estimate of the error for a several-qubit system, even if the qubits are entangled, as expected in quantum-computing applications. This makes it possible to estimate decoherence for several-qubits quantum computer gate designs for which explicit calculations are exceedingly difficult.
We investigate the influence of the electron-phonon interaction on the decay dynamics of a quantum dot coupled to an optical microcavity. We show that the electron-phonon interaction has important consequences on the dynamics, especially when the qua ntum dot and cavity are tuned out of resonance, in which case the phonons may add or remove energy leading to an effective non-resonant coupling between quantum dot and cavity. The system is investigated using two different theoretical approaches: (i) a second-order expansion in the bare phonon coupling constant, and (ii) an expansion in a polaron-photon coupling constant, arising from the polaron transformation which allows an accurate description at high temperatures. In the low temperature regime we find excellent agreement between the two approaches. An extensive study of the quantum dot decay dynamics is performed, where important parameter dependencies are covered. We find that in general the electron-phonon interaction gives rise to a greatly increased bandwidth of the coupling between quantum dot and cavity. At low temperature an asymmetry in the quantum dot decay rate is observed, leading to a faster decay when the quantum dot has a larger energy than to the cavity. We explain this as due to the absence of phonon absorption processes. Furthermore, we derive approximate analytical expressions for the quantum dot decay rate, applicable when the cavity can be adiabatically eliminated. The expressions lead to a clear interpretation of the physics and emphasizes the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions we present the parameter regimes where phonon effects are expected to be important. Also, we include all technical developments in appendices.
Among the different platforms for quantum information processing, individual electron spins in semiconductor quantum dots stand out for their long coherence times and potential for scalable fabrication. The past years have witnessed substantial progr ess in the capabilities of spin qubits. However, coupling between distant electron spins, which is required for quantum error correction, presents a challenge, and this goal remains the focus of intense research. Quantum teleportation is a canonical method to transmit qubit states, but it has not been implemented in quantum-dot spin qubits. Here, we present evidence for quantum teleportation of electron spin qubits in semiconductor quantum dots. Although we have not performed quantum state tomography to definitively assess the teleportation fidelity, our data are consistent with conditional teleportation of spin eigenstates, entanglement swapping, and gate teleportation. Such evidence for all-matter spin-state teleportation underscores the capabilities of exchange-coupled spin qubits for quantum-information transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا