ﻻ يوجد ملخص باللغة العربية
Pairing correlations have a strong influence on nuclear level densities. Empirical descriptions and theoretical models have been developed to take these effects into account. The present article discusses cases, where descriptions of nuclear level densities are inconsistent or in conflict with the present understanding of nuclear properties. Phenomenological approaches consider a back-shift parameter. However, the absolute magnitude of the back-shift, which actually corresponds to the pairing condensation energy, is generally not compatible with the observation that stable pairing correlations are present in essentially all nuclei. It is also shown that in the BCS model pairing condensation energies and critical pairing energies are inconsistent for light nuclei. A modification to the composite Gilbert-Cameron level-density description is proposed, and the use of more realistic pairing theories is suggested.
The properties of the nuclear isoscaling at finite temperature are investigated and the extent to which its parameter $alpha$ holds information on the symmetry energy is examined. We show that, although finite temperature effects invalidate the analy
Photon strength, $f(E_{gamma})$, measured in photonuclear reactions, is the product of the average level density per MeV, $rho(E_x)$, and the average reduced level width, $Gamma_{gamma}/E_{gamma}^3$ for levels populated primarily by E1 transitions at
We present an overview of concepts and results obtained with statistical models in study of nuclear multifragmentation. Conceptual differences between statistical and dynamical approaches, and selection of experimental observables for identification
We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and many-body processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N fo
The gamma-strength functions and level densities in the quasi-continuum of 147;149Sm isotopes have been extracted from particle-coincidences using the Oslo method. The nuclei of interest were populated via (p,d) reactions on pure 148;150Sm targets an