ترغب بنشر مسار تعليمي؟ اضغط هنا

Catalyst-Free Growth of Millimeter-Long Topological Insulator Bi2Se3 Nanoribbons and the Observation of pi Berry Phase

323   0   0.0 ( 0 )
 نشر من قبل Lei Fang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the growth of single-crystalline Bi2Se3 nanoribbons with lengths up to several millimeters via a catalyst-free physical vapor deposition method. Scanning transmission electron microscopy analysis reveals that the nanoribbons grow along the (1120) direction. We obtain a detailed characterization of the electronic structure of the Bi2Se3 nanoribbons from measurements of Shubnikov-de Haas (SdH) quantum oscillations. Angular dependent magneto-transport measurements reveal a dominant two-dimensional contribution originating from surface states and weak contribution from the bulk states. The catalyst-free synthesis yields high-purity nanocrystals enabling the observation of a large number of SdH oscillation periods and allowing for an accurate determination of the pi-Berry phase, one of the key features of Dirac fermions in topological insulators. The long-length nanoribbons can empower the potential for fabricating multiple nanoelectronic devices on a single nanoribbon.



قيم البحث

اقرأ أيضاً

The discovery of topological insulators (TIs) and their unique electronic properties has motivated research into a variety of applications, including quantum computing. It has been proposed that TI surface states will be energetically discretized in a quantum dot nanoparticle. These discretized states could then be used as basis states for a qubit that is more resistant to decoherence. In this work, prototypical TI Bi2Se3 nanoparticles are grown on GaAs (001) using the droplet epitaxy technique, and we demonstrate the control of nanoparticle height, area, and density by changing the duration of bismuth deposition and substrate temperature. Within the growth window studied, nanoparticles ranged from 5-15 nm tall with an 8-18nm equivalent circular radius, and the density could be relatively well controlled by changing the substrate temperature and bismuth deposition time.
The three dimensional (3D) topological insulators are predicted to exhibit a 3D Dirac semimetal state in critical regime of topological to trivial phase transition. Here we demonstrate the first experimental evidence of 3D Dirac semimetal state in to pological insulator Bi2Se3 with bulk carrier concentration of ~ 10^19 cm^{-3}, using magneto-transport measurements. At low temperatures, the resistivity of our Bi2Se3 crystal exhibits clear Shubnikov-de Haas (SdH) oscillations above 6T. The analysis of these oscillations through Lifshitz-Onsanger and Lifshitz-Kosevich theory reveals a non-trivial pi Berry phase coming from 3D bands, which is a decisive signature of 3D Dirac semimetal state. The large value of Dingle temperature and natural selenium vacancies in our crystal suggest that the observed 3D Dirac semimetal state is an outcome of enhanced strain field and weaker effective spin-orbit coupling.
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.
Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains ch allenging. We have overcome this limitation by scanning tunneling microscopy and spectroscopy measurements on in-situ molecular beam epitaxy growth of Bi2Se3 films on SrTiO3 substrates with pre-patterned electrodes. Using this gating method, we are able to shift the Fermi level of the top surface states by 250 meV on a 3 nm thick Bi2Se3 device. We report field effect studies of the surface state dispersion, band gap, and electronic structure at the Fermi level.
Topological insulator (TI) nanoribbons (NRs) provide a unique platform for investigating quantum interference oscillations combined with topological surface states. One-dimensional subbands formed along the perimeter of a TI NR can be modulated by an axial magnetic field, exhibiting Aharonov-Bohm (AB) and Altshuler-Aronov-Spivak (AAS) oscillations of magnetoconductance (MC). Using Sb-doped Bi2Se3 TI NRs, we found that the relative amplitudes of the two quantum oscillations can be tuned by varying the channel length, exhibiting crossover from quasi-ballistic to diffusive transport regimes. The AB and AAS oscillations were discernible even for a 70 micrometer long channel, while only the AB oscillations were observed for a short channel. Analyses based on ensemble-averaged fast Fourier transform of MC curves revealed exponential temperature dependences of the AB and AAS oscillations, from which the circumferential phase-coherence length and thermal length were obtained. Our observations indicate that the channel length in a TI NR can be a useful control knob for tailored quantum interference oscillations, especially for developing topological hybrid quantum devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا