ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Snoring Sounds and Its Connection with Obstructive Sleep Apnea

109   0   0.0 ( 0 )
 نشر من قبل Andre Vieira
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

Snoring is extremely common in the general population and when irregular may indicate the presence of obstructive sleep apnea. We analyze the overnight sequence of wave packets --- the snore sound --- recorded during full polysomnography in patients referred to the sleep laboratory due to suspected obstructive sleep apnea. We hypothesize that irregular snore, with duration in the range between 10 and 100 seconds, correlates with respiratory obstructive events. We find that the number of irregular snores --- easily accessible, and quantified by what we call the snore time interval index (STII) --- is in good agreement with the well-known apnea-hypopnea index, which expresses the severity of obstructive sleep apnea and is extracted only from polysomnography. In addition, the Hurst analysis of the snore sound itself, which calculates the fluctuations in the signal as a function of time interval, is used to build a classifier that is able to distinguish between patients with no or mild apnea and patients with moderate or severe apnea.



قيم البحث

اقرأ أيضاً

Obstructive Sleep Apnea (OSA) is a highly prevalent but inconspicuous disease that seriously jeopardizes the health of human beings. Polysomnography (PSG), the gold standard of detecting OSA, requires multiple specialized sensors for signal collectio n, hence patients have to physically visit hospitals and bear the costly treatment for a single detection. Recently, many single-sensor alternatives have been proposed to improve the cost efficiency and convenience. Among these methods, solutions based on RR-interval (i.e., the interval between two consecutive pulses) signals reach a satisfactory balance among comfort, portability and detection accuracy. In this paper, we advance RR-interval based OSA detection by considering its real-world practicality from energy perspectives. As photoplethysmogram (PPG) pulse sensors are commonly equipped on smart wrist-worn wearable devices (e.g., smart watches and wristbands), the energy efficiency of the detection model is crucial to fully support an overnight observation on patients. This creates challenges as the PPG sensors are unable to keep collecting continuous signals due to the limited battery capacity on smart wrist-worn devices. Therefore, we propose a novel Frequency Extraction Network (FENet), which can extract features from different frequency bands of the input RR-interval signals and generate continuous detection results with downsampled, discontinuous RR-interval signals. With the help of the one-to-multiple structure, FENet requires only one-third of the operation time of the PPG sensor, thus sharply cutting down the energy consumption and enabling overnight diagnosis. Experimental results on real OSA datasets reveal the state-of-the-art performance of FENet.
With recent advancements in deep learning methods, automatically learning deep features from the original data is becoming an effective and widespread approach. However, the hand-crafted expert knowledge-based features are still insightful. These exp ert-curated features can increase the models generalization and remind the model of some data characteristics, such as the time interval between two patterns. It is particularly advantageous in tasks with the clinically-relevant data, where the data are usually limited and complex. To keep both implicit deep features and expert-curated explicit features together, an effective fusion strategy is becoming indispensable. In this work, we focus on a specific clinical application, i.e., sleep apnea detection. In this context, we propose a contrastive learning-based cross attention framework for sleep apnea detection (named ConCAD). The cross attention mechanism can fuse the deep and expert features by automatically assigning attention weights based on their importance. Contrastive learning can learn better representations by keeping the instances of each class closer and pushing away instances from different classes in the embedding space concurrently. Furthermore, a new hybrid loss is designed to simultaneously conduct contrastive learning and classification by integrating a supervised contrastive loss with a cross-entropy loss. Our proposed framework can be easily integrated into standard deep learning models to utilize expert knowledge and contrastive learning to boost performance. As demonstrated on two public ECG dataset with sleep apnea annotation, ConCAD significantly improves the detection performance and outperforms state-of-art benchmark methods.
Objective: Sleep related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device . The objective is to automatically detect abnormal respiration and estimate the Apnea-Hypopnea-Index (AHI) with a wearable respiratory device, compared to an SpO2 signal or polysomnography using a large (n = 412) dataset serving as ground truth. Methods: Simultaneously recorded polysomnographic (PSG) and wearable respiratory effort data were used to train and evaluate models in a cross-validation fashion. Time domain and complexity features were extracted, important features were identified, and a random forest model employed to detect events and predict AHI. Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%)-feature, one allowing a time lag of 30 seconds between the two signals. Results: Event-based classification resulted in areas under the receiver operating characteristic curves of 0.94, 0.86, 0.82, and areas under the precision-recall curves of 0.48, 0.32, 0.51 for the models using respiration and SpO2, respiration-only, and SpO2-only respectively. Correlation between expert-labelled and predicted AHI was 0.96, 0.78, and 0.93, respectively. Conclusions: A wearable respiratory effort signal with or without SpO2 predicted AHI accurately. Given the large dataset and rigorous testing design, we expect our models are generalizable to evaluating respiration in a variety of environments, such as at home and in critical care.
Supervised machine learning applications in the health domain often face the problem of insufficient training datasets. The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine. All classifiers exhibit in the experiments a consistent increase in sensitivity and a kappa statistic increase by between 0.007 and 0.182.
The abnormal pause or rate reduction in breathing is known as the sleep-apnea hypopnea syndrome and affects the quality of sleep of an individual. A novel method for the detection of sleep apnea events (pause in breathing) from peripheral oxygen satu ration (SpO2) signals obtained from wearable devices is discussed in this paper. The paper details an apnea detection algorithm of a very high resolution on a per-second basis for which a 1-dimensional convolutional neural network -- which we termed SomnNET -- is developed. This network exhibits an accuracy of 97.08% and outperforms several lower resolution state-of-the-art apnea detection methods. The feasibility of model pruning and binarization to reduce the computational complexity is explored. The pruned network with 80% sparsity exhibited an accuracy of 89.75%, and the binarized network exhibited an accuracy of 68.22%. The performance of the proposed networks is compared against several state-of-the-art algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا