ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Perturbations from the Standard Model Higgs

118   0   0.0 ( 0 )
 نشر من قبل Andrea De Simone
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Higgs mass, this can happen if the Hubble rate during inflation is in the range $(10^{10}- 10^{14})$ GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the $B$-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be $m_h=125.5$ GeV and $m_t, alpha_s$ are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the $B$-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.



قيم البحث

اقرأ أيضاً

We probe the cosmological consequences of a recently proposed class of solutions to the cosmological constant problem. In these models, the universe undergoes a long period of inflation followed by a contraction and a bounce that sets the stage for t he hot big bang era. A requirement of any successful early universe model is that it must reproduce the observed scale-invariant density perturbations at CMB scales. While these class of models involve a long period of inflation, the inflationary Hubble scale during their observationally relevant stages is at or below the current Hubble scale, rendering the de Sitter fluctuations too weak to seed the CMB anisotropies. We show that sufficiently strong perturbations can still be sourced thermally if the relaxion field serving as the inflaton interacts with a thermal bath, which can be generated and maintained by the same interaction. We present a simple model where the relaxion field is derivatively (i.e. technically naturally) coupled to a non-abelian gauge sector, which gets excited tachyonically and subsequently thermalizes due to its nonlinear self-interactions. This model explains both the smallness of the cosmological constant and the amplitude of CMB anisotropies.
We investigate cosmological perturbations of scalar-tensor theories in Palatini formalism. First we introduce an action where the Ricci scalar is conformally coupled to a function of a scalar field and its kinetic term and there is also a k-essence t erm consisting of the scalar and its kinetic term. This action has three frames that are equivalent to one another: the original Jordan frame, the Einstein frame where the metric is redefined, and the Riemann frame where the connection is redefined. For the first time in the literature, we calculate the quadratic action and the sound speed of scalar and tensor perturbations in three different frames and show explicitly that they coincide. Furthermore, we show that for such action the sound speed of gravitational waves is unity. Thus, this model serves as dark energy as well as an inflaton even though the presence of the dependence of the kinetic term of a scalar field in the non-minimal coupling, different from the case in metric formalism. We then proceed to construct the L3 action called Galileon terms in Palatini formalism and compute its perturbations. We found that there are essentially 10 different(inequivalent) definitions in Palatini formalism for a given Galileon term in metric formalism. We also see that,in general, the L3 terms have a ghost due to Ostrogradsky instability and the sound speed of gravitational waves could potentially deviate from unity, in sharp contrast with the case of metric formalism. Interestingly, once we eliminate such a ghost, the sound speed of gravitational waves also becomes unity. Thus, the ghost-free L3 terms in Palatini formalism can still serve as dark energy as well as an inflaton, like the case in metric formalism.
A fundamental property of the Standard Model is that the Higgs potential becomes unstable at large values of the Higgs field. For the current central values of the Higgs and top masses, the instability scale is about $10^{11}$ GeV and therefore not a ccessible by colliders. We show that a possible signature of the Standard Model Higgs instability is the production of gravitational waves sourced by Higgs fluctuations generated during inflation. We fully characterise the two-point correlator of such gravitational waves by computing its amplitude, the frequency at peak, the spectral index, as well as their three-point correlators for various polarisations. We show that, depending on the Higgs and top masses, either LISA or the Einstein Telescope and Advanced-Ligo, could detect such stochastic background of gravitational waves. In this sense, collider and gravitational wave physics can provide fundamental and complementary informations. Furthermore, the consistency relation among the three- and the two-point correlators could provide an efficient tool to ascribe the detected gravitational waves to the Standard Model itself. Since the mechanism described in this paper might also be responsible for the generation of dark matter under the form of primordial black holes, this latter hypothesis may find its confirmation through the detection of gravitational waves.
The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete $Z_3$-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesi s if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.
We construct the gauge invariant free action for cosmological perturbations for the nonminimally coupled inflaton field in the Jordan frame. For this the phase space formalism is used, which keeps track of all the dynamical and constraint fields. We perform explicit conformal transformations to demonstrate the physical equivalence between the Jordan and Einstein frames at the level of quadratic perturbations. We show how to generalize the formalism to the case of a more complicated scalar sector with an internal symmetry, such as Higgs inflation. This work represents a first step in developing gauge invariant perturbation theory for nonminimally coupled inflationary models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا