ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of a broad class of stochastic copying processes on a network that includes examples from population genetics (spatially-structured Wright-Fisher models), ecology (Hubbell-type models), linguistics (the utterance selection model) and opinion dynamics (the voter model) as special cases. These models all have absorbing states of fixation where all the nodes are in the same state. Earlier studies of these models showed that the mean time when this occurs can be made to grow as different powers of the network size by varying the the degree distribution of the network. Here we demonstrate that this effect can also arise if one varies the asymmetry of the copying dynamics whilst holding the degree distribution constant. In particular, we show that the mean time to fixation can be accelerated even on homogeneous networks when certain nodes are very much more likely to be copied from than copied to. We further show that there is a complex interplay between degree distribution and asymmetry when they may co-vary; and that the results are robust to correlations in the network or the initial condition.
We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying a
An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable network activations within a limited critical range. In this range, the activity of n
Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by
It has been recently discovered that the measles virus can wipe out the adaptive immune system, destroying B lymphocytes and reducing the diversity of non-specific B cells of the infected host. In particular, this implies that previously acquired imm
We discuss a non-reversible Markov chain Monte Carlo (MCMC) algorithm for particle systems, in which the direction of motion evolves deterministically. This sequential direction-sweep MCMC generalizes the widely spread MCMC sweep methods for particle