ﻻ يوجد ملخص باللغة العربية
Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.
New fissile isotopes antineutrino spectra ($^{235}$U, $^{238}$U, $^{239}$Pu and $^{241}$Pu) calculation is presented. On base of summation method the toy model was developed. It was shown that total antineutrino number is conserved in framework of gi
We calculate the Inverse Beta Decay (IBD) antineutrino spectrum generated by nuclear reactors using the summation method to understand deviations from the smooth Huber-Mueller model due to the decay of individual fission products, showing that plotti
Recently new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu and 238U, increasing the mean flux by about 3 percent. To good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of publishe
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of $overline{ u}_{e}$ is important when making theore
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare the