ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of a wave packet tailored to efficient free space excitation of a single atom

100   0   0.0 ( 0 )
 نشر من قبل Markus Sondermann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wave and show the required spatial and temporal shaping of the mode incident onto the mirror. The results include a proof of principle correction of the parabolic mirrors aberrations. For the application of exciting an atom with a single photon pulse we demonstrate the creation of a suitable temporal pulse envelope. We infer coupling strengths of 89% and success probabilities of up to 87% for the application of exciting a single atom for the current experimental parameters.



قيم البحث

اقرأ أيضاً

A simple model allows us to study the nonclassical behavior of slowly moving atoms interacting with a quantized field. Atom and field become entangled and their joint state can be identified as a mesoscopic Schroedinger-cat. By introducing appropriat e observables for atom and field and by analyzing correlations between them based on a Bell-type inequality we can show the corresponding nonclassical behavior.
State mapping between atoms and photons, and photon-photon interactions play an important role in scalable quantum information processing. We consider the interaction of a two-level atom with a quantized textit{propagating} pulse in free space and st udy the probability $P_e(t)$ of finding the atom in the excited state at any time $t$. This probability is expected to depend on (i) the quantum state of the pulse field and (ii) the overlap between the pulse and the dipole pattern of the atomic spontaneous emission. We show that the second effect is captured by a single parameter $Lambdain[0,8pi/3]$, obtained by weighting the dipole pattern with the numerical aperture. Then $P_e(t)$ can be obtained by solving time-dependent Heisenberg-Langevin equations. We provide detailed solutions for both single photon Fock state and coherent states and for various temporal shapes of the pulses.
In this article, we describe how to develop a mode converter that transforms a plane electromagnetic wave into an inward moving dipole wave. The latter one is intended to bring a single atom or ion from its ground state to its excited state by absorp tion of a single photon wave packet with near-100% efficiency.
We present a novel approach to engineer the photon correlations emerging from the interference between an input field and the field scattered by a single atom in free space. Nominally, the inefficient atom-light coupling causes the quantum correlatio ns to be dominated by the input field alone. To overcome this issue, we propose the use of separate pump and probe beams, where the former increases the atomic emission to be comparable to the probe. Examining the second-order correlation function $g^{(2)}(tau)$ of the total field in the probe direction, we find that the addition of the pump formally plays the same role as increasing the coupling efficiency. We show that one can tune the correlation function $g^{(2)}(0)$ from zero (perfect anti-bunching) to infinite (extreme bunching) by a proper choice of pump amplitude. We further elucidate the origin of these correlations in terms of the transient atomic state following the detection of a photon.
We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope t hat is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator (EOM). The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single Rb-87 atom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا