ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal interaction vs. ram pressure stripping effects as seen in X-rays. Hot gas in group and cluster galaxies

154   0   0.0 ( 0 )
 نشر من قبل Marek We\\.zgowiec
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hot intracluster/intragroup medium (ICM/IGM) and a high galaxy density can lead to perturbations of the galactic interstellar medium (ISM) due to ram pressure and/or tidal interaction effects. In radio polarimetry observations, both phenomena may manifest similar features. X-ray data can help to determine the real origin of the perturbation. We analyse the distribution and physical properties of the hot gas in the Virgo cluster spiral galaxies NGC 4254 and NGC 4569, which indicate that the cluster environment has had a significant influence on their properties. By performing both spatial and spectral analyses of X-ray data, we try to distinguish between two major phenomena: tidal and ram pressure interactions. We compare our findings with the case of NGC 2276, in which a shock was reported, by analysing XMM-Newton X-ray data for this galaxy. We use archival XMM-Newton observations of NGC 4254, NGC 4569, and NGC 2276. Maps of the soft diffuse emission in the energy band 0.2 - 1 keV are obtained. For the three galaxies, especially at the position of magnetic field enhancements we perform a spectral analysis to derive gas temperatures and thus to look for shock signatures. A shock is a signature of ram pressure resulting from supersonic velocities; weak tidal interactions are not expected to influence the temperature of the ionized gas. In NGC 4254, we do not observe any temperature increase. This suggests tidal interactions rather than ram pressure stripping. In NGC 4569 the radio polarized ridge shows a higher temperature, which may indicate ram-pressure effects. For NGC 2276, we do not find clear indications of a shock. The main driver of the observed distortions is most likely tidal interaction. Determining gas temperatures via sensitive X-ray observations seems to be a good method for distinguishing between ram pressure and tidal interaction effects acting upon a galaxy.



قيم البحث

اقرأ أيضاً

Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium (ICM), as shown by observations of X-ray and HI galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in grou p environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that $sim 1 - 4$ kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centers. We find that coronal emission should be detected within $sim 10$ arcsec, or $sim 5$ kpc up to $sim 2.3$ Gyr in the lowest (0.1 - 1.2 keV) energy band. Thus the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray halos of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogs can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.
124 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inc lination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (stellar mass from 0.4E10 to 1E10 Msun) galaxies are members of the two clusters SC-1329-313 (z=0.045) and SC-1327-312 (z=0.049). Integ ral-field spectroscopy complemented by imaging in ugriK bands and in Halpha narrow-band are used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS-61086 and SOS-90630, we observe one-sided extraplanar ionized gas extending respectively 30kpc and 41kpc in projection from their disks. The galaxies gaseous disks are truncated and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS-61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting about 250Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster-cluster interaction experienced by SC-1329-313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS-90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster-cluster merger on RPS.
We report the detection of H$alpha$ trails behind three new intermediate-mass irregular galaxies in the NW outskirts of the nearby cluster of galaxies Abell 1656 (Coma). Hints that these galaxies possess an extended component were found in earlier, d eeper H$alpha$ observations carried out with the Subaru telescope. However the lack of a simultaneous $r$-band exposure, together with the presence of strong stellar ghosts in the Subaru images, prevented us from quantifying the detections. We therefore devoted one full night of H$alpha$ observation to each of the three galaxies using the San Pedro Martir 2.1m telescope. One-sided tails of H$alpha$ emission of 10-20 kpc projected size were detected, suggesting an ongoing ram pressure stripping event. We added these 3 new sources of extended ionized gas (EIG) added to the 12 found by Yagi et al. (2010), NGC 4848 (Fossati et al. 2012), and NGC 4921 whose ram pressure stripping is certified by HI asymmetry. This brings the number sources with H$alpha$ trails to 17 gaseous tails out of 27 (63 %) late-type galaxies (LTG) galaxies members of the Coma cluster with direct evidence of ram pressure stripping. The 27 LTG galaxies, among these the 17 with extended H$alpha$ tails, have kinematic properties that are different from the rest of the early-type galaxy (ETG) population of the c ore of the Coma cluster, as they deviate in the phase-space diagram $Delta$V/$sigma$ versus $r/R_{200}$.
We investigate the effects of magnetic fields and turbulence on ram pressure stripping in elliptical galaxies using ideal magnetohydrodynamics simulations. We consider weakly-magnetised interstellar medium (ISM) characterised by subsonic turbulence, and two orientations of the magnetic fields in the intracluster medium (ICM) - parallel and perpendicular to the direction of the galaxy motion through the ICM. While the stronger turbulence enhances the ram pressure stripping mass loss, the magnetic fields tend to suppress the stripping rates, and the suppression is stronger for parallel fields. However, the effect of magnetic fields on the mass stripping rate is mild. Nevertheless, the morphology of the stripping tails depends significantly on the direction of the ICM magnetic field. The effect of the magnetic field geometry on the tail morphology is much stronger than that of the level of the ISM turbulence. The tail has a highly collimated shape for parallel fields, while it has a sheet-like morphology in the plane of the ICM magnetic field for perpendicular fields. The magnetic field in the tail is amplified irrespectively of the orientation of the ICM field. More strongly magnetised regions in the ram pressure stripping tails are expected to have systematically higher metallicity due to the strong concentration of the stripped ISM than the less magnetised regions. Strong dependence of the morphology of the stripped ISM on the magnetic field could potentially be used to constrain the relative orientation of the ram pressure direction and the dominant component of the ICM magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا