Joint numerical ranges, quantum maps, and joint numerical shadows


الملخص بالإنكليزية

We associate with k hermitian Ntimes N matrices a probability measure on R^k. It is supported on the joint numerical range of the k-tuple of matrices. We call this measure the joint numerical shadow of these matrices. Let k=2. A pair of hermitian Ntimes N matrices defines a complex Ntimes N matrix. The joint numerical range and the joint numerical shadow of the pair of hermitian matrices coincide with the numerical range and the numerical shadow, respectively, of this complex matrix. We study relationships between the dynamics of quantum maps on the set of quantum states, on one hand, and the numerical ranges, on the other hand. In particular, we show that under the identity resolution assumption on Kraus operators defining the quantum map, the dynamics shrinks numerical ranges.

تحميل البحث