ﻻ يوجد ملخص باللغة العربية
We present a novel and efficient in terms of circuit depth design for Shors quantum factorization algorithm. The circuit effectively utilizes a diverse set of adders based on the quantum Fourier transform (QFT) Drapers adders to build more complex arithmetic blocks: quantum multiplier/accumulators by constants and quantum dividers by constants. These arithmetic blocks are effectively architected into a generic modular quantum multiplier which is the fundamental block for modular exponentiation circuit, the most computational intensive part of Shors algorithm. The proposed modular exponentiation circuit has a depth of about $2000n^{2}$ and requires $9n+2$ qubits, where $n$ is the number of bits of the classical number to be factored. The total quantum cost of the proposed design is $1600n^{3}$. The circuit depth can be further decreased by more than three times if the approximate QFT implementation of each adder unit is exploited.
The quantum multicomputer consists of a large number of small nodes and a qubus interconnect for creating entangled state between the nodes. The primary metric chosen is the performance of such a system on Shors algorithm for factoring large numbers:
We show how the execution time of algorithms on quantum computers depends on the architecture of the quantum computer, the choice of algorithms (including subroutines such as arithmetic), and the ``clock speed of the quantum computer. The primary arc
We optimize the area and latency of Shors factoring while simultaneously improving fault tolerance through: (1) balancing the use of ancilla generators, (2) aggressive optimization of error correction, and (3) tuning the core adder circuits. Our cust
Shors powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shors algorithm in a photonic system
We investigate the performance of a streamlined version of Shors algorithm in which the quantum Fourier transform is replaced by a banded version that for each qubit retains only coupling to its $b$ nearest neighbors. Defining the performance $P(n,b)