ﻻ يوجد ملخص باللغة العربية
We present the performances of a 330 g zinc molybdate (ZnMoO4) crystal working as scintillating bolometer as a possible candidate for a next generation experiment to search for neutrinoless double beta decay of 100Mo. The energy resolution, evaluated at the 2615 keV gamma-line of 208Tl, is 6.3 keV FWHM. The internal radioactive contaminations of the ZnMoO4 were evaluated as <6 microBq/kg (228Th) and 27pm6 microBq/kg (226Ra). We also present the results of the alpha vs beta/gamma discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone.
We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discriminat
Zinc molybdate (ZnMoO4) single crystals were grown for the first time by the Czochralski method and their luminescence was measured under X ray excitation in the temperature range 85-400 K. Properties of ZnMoO4 crystal as cryogenic low temperature sc
Bolometers are ideal devices in the search for neutrinoless Double Beta Decay. Enlarging the mass of individual detectors would simplify the construction of a large experiment, but would also decrease the background per unit mass induced by alpha-emi
The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in $^{100}$Mo by means of a large array of scintillating bolometers based on ZnMoO$_4$ crystals enriched in $^{100}$Mo. High energy resolution and rel
The Bayesian discovery probability of future experiments searching for neutrinoless double-$beta$ decay is evaluated under the popular assumption that neutrinos are their own antiparticles. A Bayesian global fit is performed to construct a probabilit