ترغب بنشر مسار تعليمي؟ اضغط هنا

3.6 and 4.5 Micron Phase Curves and Evidence for Non-Equilibrium Chemistry in the Atmosphere of Extrasolar Planet HD 189733b

177   0   0.0 ( 0 )
 نشر من قبل Heather Knutson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 micron bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 micron, these data allow us to characterize the exoplanets emission spectrum as a function of planetary longitude. We utilize improved methods for removing the effects of intrapixel sensitivity variations and accounting for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% +/- 0.0061% in the 3.6 micron band and 0.0982% +/- 0.0089% in the 4.5 micron band. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 micron, and we present new evidence indicating that the flux minimum observed in the 8 micron is likely caused by an over-shooting effect in the 8 micron array. We obtain improved estimates for HD 189733bs dayside planet-star flux ratio of 0.1466% +/- 0.0040% at 3.6 micron and 0.1787% +/- 0.0038% at 4.5 micron; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of models from Burrows et al. (2008) and Showman et al. (2009). We find that HD 189733bs 4.5 micron nightside flux is 3.3 sigma smaller than predicted by the Showman et al. models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best-explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 micron absorption in this region. [abridged]



قيم البحث

اقرأ أيضاً

331 - P.F.L. Maxted 2012
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phas e effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.
In this paper we present three-dimensional atmospheric simulations of the hot Jupiter HD~189733b under two different scenarios: local chemical equilibrium and including advection of the chemistry by the resolved wind. Our model consistently couples t he treatment of dynamics, radiative transfer and chemistry, completing the feedback cycle between these three important processes. The effect of wind--driven advection on the chemical composition is qualitatively similar to our previous results for the warmer atmosphere of HD~209458b, found using the same model. However, we find more significant alterations to both the thermal and dynamical structure for the cooler atmosphere of HD~189733b, with changes in both the temperature and wind velocities reaching $sim10%$. We also present the contribution function, diagnosed from our simulations, and show that wind--driven chemistry has a significant impact on its three--dimensional structure, particularly for regions where methane is an important absorber. Finally, we present emission phase curves from our simulations and show the significant effect of wind--driven chemistry on the thermal emission, particularly within the 3.6 textmu m Spitzer/IRAC channel.
We use signal enhancement techniques and a matched filter analysis to search for the K band spectroscopic absorption signature of the close orbiting extrasolar giant planet, HD 189733b. With timeseries observations taken with NIRSPEC at the Keck II t elescope, we investigate the relative abundances of H2O and carbon bearing molecules, which have now been identified in the dayside spectrum of HD 189733b. We detect a candidate planet signature with a low level of significance, close to the ~153 km/s velocity amplitude of HD 189733b. However, some systematic variations, mainly due to imperfect telluric line removal, remain in the residual spectral timeseries in which we search for the planetary signal. The robustness of our candidate signature is assessed, enabling us to conclude that it is not possible to confirm the presence of any planetary signal which appears at Fp/F* contrasts deeper than the 95.4 per cent confidence level. Our search does not enable us to detect the planet at a contrast ratio of Fp/F* = 1/1920 with 99.9 per cent confidence. We also investigate the effect of model uncertainties on our ability to reliably recover a planetary signal. The use of incorrect temperature, model opacity wavelengths and model temperature-pressure profiles have important consequences for the least squares deconvolution procedure that we use to boost the S/N ratio in our spectral timeseries observations. We find that mismatches between the empirical and model planetary spectrum may weaken the significance of a detection by ~30-60 per cent, thereby potentially impairing our ability to recover a planetary signal with high confidence.
We present full-orbit phase curve observations of the eccentric ($esim 0.08$) transiting hot Jupiter WASP-14b obtained in the 3.6 and 4.5 $mu$m bands using the textit{Spitzer Space Telescope}. We use two different methods for removing the intrapixel sensitivity effect and compare their efficacy in decoupling the instrumental noise. Our measured secondary eclipse depths of $0.1882%pm 0.0048%$ and $0.2247%pm 0.0086%$ at 3.6 and 4.5 $mu$m, respectively, are both consistent with a blackbody temperature of $2402pm 35$ K. We place a $2sigma$ upper limit on the nightside flux at 3.6 $mu$m and find it to be $9%pm 1%$ of the dayside flux, corresponding to a brightness temperature of 1079 K. At 4.5 $mu$m, the minimum planet flux is $30%pm 5%$ of the maximum flux, corresponding to a brightness temperature of $1380pm 65$ K. We compare our measured phase curves to the predictions of one-dimensional radiative transfer and three-dimensional general circulation models. We find that WASP-14bs measured dayside emission is consistent with a model atmosphere with equilibrium chemistry and a moderate temperature inversion. These same models tend to over-predict the nightside emission at 3.6 $mu$m, while under-predicting the nightside emission at 4.5 $mu$m. We propose that this discrepancy might be explained by an enhanced global C/O ratio. In addition, we find that the phase curves of WASP-14b ($7.8 M_{mathrm{Jup}}$) are consistent with a much lower albedo than those of other Jovian mass planets with thermal phase curve measurements, suggesting that it may be emitting detectable heat from the deep atmosphere or interior processes.
We use high spatial resolution maps of stellar mass and infrared flux of the Large Magellanic Cloud (LMC) to calibrate a conversion between 3.6 and 4.5 micron fluxes and stellar mass, M_* = 10^{5.65} * F_{3.6}^{2.85} * F_{4.5}^{-1.85} * (D/0.05)^2 M_ solar, where fluxes are in Jy and D is the luminosity distance to the source in Mpc, and to provide an approximate empirical estimate of the fractional internal uncertainty in M_* of 0.3*sqrt{N/10^6}, where N is the number of stars in the region. We find evidence that young stars and hot dust contaminate the measurements, but attempts to remove this contamination using data that is far superior than what is generally available for unresolved galaxies resulted in marginal gains in accuracy. The scatter among mass estimates for regions in the LMC is comparable to that found by previous investigators when modeling composite populations, and so we conclude that our simple conversion is as precise as possible for the data and models currently available. Our results allow for a reasonably bottom-heavy initial mass function, such as Salpeter or heavier, and moderately disfavor light
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا