ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas-phase metallicity of 27 galaxies at intermediate redshift

94   0   0.0 ( 0 )
 نشر من قبل Lorenzo Morelli Dr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of this work is to make available new gas-phase oxygen abundance measurements for a serendipitous sample of 27 galaxies with redshift 0.35<z<0.52. We measured the equivalent widths of the [O II]{lambda}3727, H{beta}, and [O III]{lambda}{lambda}4959, 5007 emission lines observed in the galaxy spectra obtained with the Visible Multi-Object Spectrograph mounted at the Very Large Telescope. For each galaxy, we derived the metallicity-sensitive emission lines ratio R23, ionization-sensitive emission lines ratio O32, and gas-phase oxygen abundance 12+log(O/H). The values of gas-phase oxygen abundance 12+log(O/H) we obtained for the sample galaxies are consistent with previous findings for galaxies at intermediate redshift.



قيم البحث

اقرأ أيضاً

Recent spatially resolved observations of galaxies at z=0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmo logical zoom-in simulations from the Feedback in Realistic Environments (FIRE) project, which include physically motivated models of the multi-phase ISM, star formation, and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z=0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disk, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disk, drive strong outflows, and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.
We present the stellar velocity dispersion measurements for 5 Luminous Compact Galaxies (LCGs) at z=0.5-0.7. These galaxies are vigorously forming stars with average SFR $sim$ 40 M$_{odot}$/yr. We find that their velocity dispersions range from $sim1 37 rm{km/s}$ to $260 rm{km/s}$, while their stellar masses range between $4times 10^{9}$ and $10^{11}$ M$_{odot}$. If these LCGs evolve passively after this major burst of star formation, their masses and velocity dispersions, as well as their evolved colours and luminosities are most consistent with the values characteristic of early-type spiral galaxies today.
We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z=0.05 to z=0.5, with stellar masses of (4-30)x10^10 M_Sun and star formation rates of 4-100 M_Sun y r^-1. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(1-0) and CO(3-2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 pm 0.54 Gyr for normal galaxies and 0.06 pm 0.04 Gyr for starburst galaxies. We calculate an average molecular gas fraction of 7-20% at the intermediate redshifts probed by the EGNoG survey. By expressing the molecular gas fraction in terms of the specific star formation rate and molecular gas depletion time (using typical values), we also calculate the expected evolution of the molecular gas fraction with redshift. The predicted behavior agrees well with the significant evolution observed from z~2.5 to today.
204 - James E. Geach 2009
We present IRAM Plateau de Bure Interferometer 3mm observations of CO(1-0) emission in two 24um-selected starburst galaxies in the outskirts (2-3xR_virial) of the rich cluster Cl0024+16 (z=0.395). The galaxies inferred far-infrared luminosities place them in the luminous infrared galaxy class (LIRGs, L_FIR>10^11 L_Sun), with star formation rates of ~60 M_Sun/yr. Strong CO(1-0) emission is detected in both galaxies, and we use the CO line luminosity to estimate the mass of cold molecular gas, M(H_2). Assuming M(H_2)/L_CO = 0.8 M_Sun/(K km^-1 pc^2), we estimate M(H_2) = (5.4-9.1)x10^9 M_Sun for the two galaxies. We estimate the galaxies dynamical masses from their CO line-widths, M_dyn~1-3x10^10 M_Sun, implying large cold gas fractions in the galaxies central regions. At their current rates they will complete the assembly of M_Stars~10^10 M_Sun and double their stellar mass within as little as ~150Myr. If these galaxies are destined to evolve into S0s, then the short time-scale for stellar mass assembly implies that their major episode of bulge growth occurs while they are still in the cluster outskirts, long before they reach the core regions. Subsequent fading of the disc component relative to the stellar bulge after the gas reservoirs have been exhausted could complete the transformation of spiral-to-S0.
138 - G. G. Kacprzak 2009
We obtained ESI/Keck rotation curves of 10 MgII absorption selected galaxies (0.3 < z < 1.0) for which we have WFPC-2/HST images and high resolution HIRES/Keck and UVES/VLT quasar spectra of the MgII absorption profiles. We perform a kinematic compar ison of these galaxies and their associated halo MgII absorption. For all 10 galaxies, the majority of the absorption velocities lie in the range of the observed galaxy rotation velocities. In 7/10 cases, the absorption velocities reside fully to one side of the galaxy systemic velocity and usually align with one arm of the rotation curve. In all cases, a constant rotating thick-disk model poorly reproduces the full spread of observed MgII absorption velocities when reasonably realistic parameters are employed. In 2/10 cases, the galaxy kinematics, star formation surface densities, and absorption kinematics have a resemblance to those of high redshift galaxies showing strong outflows. We find that MgII absorption velocity spread and optical depth distribution may be dependent on galaxy inclination. To further aid in the spatial-kinematic relationships of the data, we apply quasar absorption line techniques to a galaxy (v_c=180 km/s) embedded in LCDM simulations. In the simulations, MgII absorption selects metal enriched halo gas out to roughly 100 kpc from the galaxy, tidal streams, filaments, and small satellite galaxies. Within the limitations inherent in the simulations, the majority of the simulated MgII absorption arises in the filaments and tidal streams and is infalling towards the galaxy with velocities between -200 < v_r < -180 km/s. The MgII absorption velocity offset distribution (relative to the simulated galaxy) spans ~200 km/s with the lowest frequency of detecting MgII at the galaxy systematic velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا