ترغب بنشر مسار تعليمي؟ اضغط هنا

Radical-free dynamic nuclear polarization using electronic defects in silicon

101   0   0.0 ( 0 )
 نشر من قبل Charles Marcus
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct dynamic nuclear polarization of 1H nuclei in frozen water and water-ethanol mixtures is demonstrated using silicon nanoparticles as the polarizing agent. Electron spins at dangling-bond sites near the silicon surface are identified as the source of the nuclear hyperpolarization. This novel polarization method open new avenues for the fabrication of surface engineered nanostructures to create high nuclear-spin polarized solutions without introducing contaminating radicals, and for the study of molecules adsorbed onto surfaces.



قيم البحث

اقرأ أيضاً

We present an experimental study of the Dynamic Nuclear Polarization (DNP) of si{} nuclei in silicon crystals of natural abundance doped with As in the temperature range 0.1-1 K and in strong magnetic field of 4.6 T. This ensures very high degree of electron spin polarization, extremely slow nuclear relaxation and optimal conditions for realization of Overhauser and resolved solid effects. We found that the solid effect DNP leads to an appearance of a pattern of holes and peaks in the ESR line, separated by the super-hyperfine interaction between the donor electron and si{} nuclei closest to the donor. On the contrary, the Overhauser effect DNP mainly affects the remote si{} nuclei having the weakest interaction with the donor electron. This leads to an appearance of a very narrow ($approx$ 3 mG wide) hole in the ESR line. We studied relaxation of the holes after burning, which is caused by the nuclear spin diffusion. Analyzing the spin diffusion data with a simple one-dimensional spectral diffusion model leads to a value of the spectral diffusion coefficient $D=8(3)times 10^{-3}$ mG$^2$/s. Our data indicate that the spin diffusion is not completely prevented even in the frozen core near the donors. The emergence of the narrow hole after the Overhauser DNP may be explained by a partial softening of the frozen core caused by Rabi oscillations of the electron spin.
Time-resolved optical measurements of electron-spin dynamics in a (110) GaAs quantum well are used to study the consequences of a strongly anisotropic electron g-tensor, and the origin of previously discovered all-optical nuclear magnetic resonance. All components of the g-tensor are measured, and a strong anisotropy even along the in-plane directions is found. The amplitudes of the spin signal allow the study of the spatial directions of the injected spin and its precession axis. Surprisingly efficient dynamic nuclear polarization in a geometry where the electron spins are injected almost transverse to the applied magnetic field is attributed to an enhanced non-precessing electron spin component. The small absolute value of the electron g-factor combined with efficient nuclear spin polarization leads to large nuclear fields that dominate electron spin precession at low temperatures. These effects allow for sensitive detection of all-optical nuclear magnetic resonance induced by periodically excited quantum-well electrons. The mechanism of previously observed Delta m = 2 transitions is investigated and found to be attributable to electric quadrupole coupling, whereas Delta m = 1 transitions show signatures of both quadrupole and electron-spin induced magnetic dipole coupling.
Scanning tunneling microscopy (STM) reveals unusual sharp features in otherwise defect free bismuth nanolines self-assembled on Si(001). They appear as subatomic thin lines perpendicular to the bismuth nanoline at positive biases and as atomic size b eads at negative biases. Density functional theory (DFT) simulations show that these features can be attributed to buckled Si dimers substituting for Bi dimers in the nanoline, where the sharp feature is the counterintuitive signature of these dimers flipping during scanning. The perfect correspondence between the STM data and the DFT simulation demonstrated in this study highlights the detailed understanding we have of the complex Bi-Si(001) Haiku system.
We investigate the low-field relaxation of nuclear hyperpolarization in undoped and highly doped silicon microparticles at room temperature following removal from high field. For nominally undoped particles, two relaxation time scales are identified for ambient fields above 0.2 mT. The slower, T_1s, is roughly independent of ambient field; the faster, T_1f, decreases with increasing ambient field. A model in which nuclear spin relaxation occurs at the particle surface via a two-electron mechanism is shown to be in good agreement with the experimental data, particularly the field-independence of T_1s. For boron-doped particles, a single relaxation time scale is observed. This suggests that for doped particles, mobile carriers and bulk ionized acceptor sites, rather than paramagnetic surface states, are the dominant relaxation mechanisms. Relaxation times for the undoped particles are not affected by tumbling in a liquid solution.
We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov erhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called dark states, and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا