ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Mass Tertiary Companions to Spectroscopic Binaries I: Common Proper Motion Survey for Wide Companions using 2MASS

122   0   0.0 ( 0 )
 نشر من قبل Peter Allen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the 2MASS Point Source Catalog and follow-up observations with the KPNO and CTIO 4m telescopes. Note that this sample is not volume-complete but volume-limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU (~10 -> ~10). From 77 sources followed-up to date, we recover 11 previously known tertiaries, three previously known candidate tertiaries, of which two are spectroscopically confirmed and one rejected, and three new candidates, of which two are confirmed and one rejected. This yields an estimated wide tertiary fraction of 19.5^+5.2%_-3.7%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%, and is roughly twice the wide companion rate of single stars.



قيم البحث

اقرأ أيضاً

A set of 41 nearby stars (closer than 25 pc) is investigated which have very wide binary and common proper motion (CPM) companions at projected separations between 1000 and $200 000$ AU. These companions are identified by astrometric positions and pr oper motions from the NOMAD catalog. Based mainly on measures of chromospheric and X-ray activity, age estimation is obtained for most of 85 identified companions. Color -- absolute magnitude diagrams are constructed to test if CPM companions are physically related to the primary nearby stars and have the same age. Our carefully selected sample includes three remote white dwarf companions to main sequence stars and two systems (55 Cnc and GJ 777A) of multiple planets and distant stellar companions. Ten new CPM companions, including three of extreme separations, are found. Multiple hierarchical systems are abundant; more than 25% of CPM components are spectroscopic or astrometric binaries or multiples themselves. Two new astrometric binaries are discovered among nearby CPM companions, GJ 264 and HIP 59000 and preliminary orbital solutions are presented. The Hyades kinematic group (or stream) is presented broadly in the sample, but we find few possible thick disk objects and none halo stars. It follows from our investigation that moderately young (age $lesssim 1$ Gyr) thin disk dwarfs are the dominating species in the near CPM systems, in general agreement with the premises of the dynamical survival paradigm. Some of the multiple stellar systems with remote CPM companions probably undergo the dynamical evolution on non-coplanar orbits, known as the Kozai cycle.
Evolution of close binaries often proceeds through the common envelope stage. The physics of the envelope ejection (CEE) is not yet understood, and several mechanisms were suggested to be involved. These could give rise to different timescales for th e CEE mass-loss. In order to probe the CEE-timescales we study wide companions to post-CE binaries. Faster mass-loss timescales give rise to higher disruption rates of wide binaries and result in larger average separations. We make use of data from Gaia DR2 to search for ultra-wide companions (projected separations $10^3$-$2times 10^5$ a.u. and $M_2 > 0.4$ M$_odot$) to several types of post-CEE systems, including sdBs, white-dwarf post-common binaries, and cataclysmic variables. We find a (wide-orbit) multiplicity fraction of $1.4pm 0.2$ per cent for sdBs to be compared with a multiplicity fraction of $5.0pm 0.2$ per cent for late-B/A/F stars which are possible sdB progenitors. The distribution of projected separations of ultra-wide pairs to main sequence stars and sdBs differs significantly and is compatible with prompt mass loss (upper limit on common envelope ejection timescale of $10^2$ years). The smaller statistics of ultra-wide companions to cataclysmic variables and post-CEE binaries provide weaker constraints. Nevertheless, the survival rate of ultra-wide pairs to the cataclysmic variables suggest much longer, $sim10^4$ years timescales for the CEE in these systems, possibly suggesting non-dynamical CEE in this regime.
[abridged] The severe crowding in the direction of the inner Milky Way suggests that the census of stars within a few tens of parsecs in that direction may not be complete. We search for new nearby objects companions of known high proper motion (HP M) stars located towards the densest regions of the Southern Milky Way where the background contamination presented a major problem to previous works. The common proper motion (PM) method was used--we inspected the area around 167 known HPM (>=200 mas/yr) stars: 67 in the disk and 100 in the bulge. Multi-epoch images were provided by 2MASS and the VISTA Variables in Via Lactea (VVV). The VVV is a new on-going ZYJHKs plus multi-epoch Ks survey of ~562 deg^2 of Milky Ways bulge and inner Southern disk. Seven new co-moving companions were discovered around known HPM stars; six known co-moving pairs were recovered; a pair of stars that was thought to be co-moving was found to have different proper motions; published HPMs of eight stars were not confirmed; last but not least, spectral types ranging from G8V to M5V were derived from new infrared spectroscopy for seventeen stars, members of the co-moving pairs. The seven newly discovered stars constitute ~4% of the nearby HPM star list but this is not a firm limit on the HPM star incompleteness because our starting point--the HPM list assembled from the literature--is incomplete itself, missing many nearby HPM M and L type objects, and it is contaminated with non-HPM stars. We have demonstrated, that the superior sub-arcsec spatial resolution, with respect to previous surveys, allows the VVV to examine further the binary nature nature of known HPM stars. The >=5 yr span of VVV will provide sufficient baseline for finding new HPM stars from VVV data alone.
138 - K. Beuermann 2012
We report new mid-eclipse times of the two close binaries NSVS14256825 and HS0705+6700, harboring an sdB primary and a low-mass main-sequence secondary. Both objects display clear variations in the measured orbital period, which can be explained by t he action of a third object orbiting the binary. If this interpretation is correct, the third object in NSVS14256825 is a giant planet with a mass of roughly 12 M_Jup. For HS0705+6700, we provide evidence that strengthens the case for the suggested periodic nature of the eclipse time variation and reduces the uncertainties in the parameters of the brown dwarf implied by that model. The derived period is 8.4 yr and the mass is 31 M_Jup, if the orbit is coplanar with the binary. This research is part of the PlanetFinders project, an ongoing collaboration between professional astronomers and student groups at high schools.
265 - Duy Cuong Nguyen 2011
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial ve locity precision of ~80 m/s with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on radial velocity variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Cha I (7%) and Tau-Aur (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient radial velocity precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا