ﻻ يوجد ملخص باللغة العربية
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass $m$, confined to bounce elastically between two rigid walls where one is described by a non-linear van der Pol type oscillator while the other one is fixed, working as a re-injection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional non-linear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; (ii) the case where collisions of the particle does affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter ($c{hi}$) controlling the non-linearity of the moving wall. For large $c{hi}$, a diffusion on the velocity is observed leading us to conclude that Fermi acceleration is taking place. On the other hand for case (ii), the motion of the moving wall is affected by collisions with the particle. However due to the properties of the van der Pol oscillation, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicate organization.
Classical dynamical systems close to a critical point are known to act as efficient sensors due to a strongly nonlinear response. We explore such systems in the quantum regime by modeling a quantum version of a driven van der Pol oscillator. We find
The equation of the Van der Pol oscillator, being characterized by a dissipative term, is non-Lagrangian. Appending an additional degree of freedom we bring the equation in the frame of action principle and thus introduce a one-way coupled system. As
We find exact mappings for a class of limit cycle systems with noise onto quasi-symplectic dynamics, including a van der Pol type oscillator. A dual role potential function is obtained as a component of the quasi-symplectic dynamics. Based on a stoch
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation
We investigate the effects of exponentially correlated noise on birhythmic van der Pol type oscillators. The analytical results are obtained applying the quasi-harmonic assumption to the Langevin equation to derive an approximated Fokker-Planck equat