ترغب بنشر مسار تعليمي؟ اضغط هنا

CloudMine: Multi-Party Privacy-Preserving Data Analytics Service

156   0   0.0 ( 0 )
 نشر من قبل Tien Tuan Anh Dinh
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An increasing number of businesses are replacing their data storage and computation infrastructure with cloud services. Likewise, there is an increased emphasis on performing analytics based on multiple datasets obtained from different data sources. While ensuring security of data and computation outsourced to a third party cloud is in itself challenging, supporting analytics using data distributed across multiple, independent clouds is even further from trivial. In this paper we present CloudMine, a cloud-based service which allows multiple data owners to perform privacy-preserved computation over the joint data using their clouds as delegates. CloudMine protects data privacy with respect to semi-honest data owners and semi-honest clouds. It furthermore ensures the privacy of the computation outputs from the curious clouds. It allows data owners to reliably detect if their cloud delegates have been lazy when carrying out the delegated computation. CloudMine can run as a centralized service on a single cloud, or as a distributed service over multiple, independent clouds. CloudMine supports a set of basic computations that can be used to construct a variety of highly complex, distributed privacy-preserving data analytics. We demonstrate how a simple instance of CloudMine (secure sum service) is used to implement three classical data mining tasks (classification, association rule mining and clustering) in a cloud environment. We experiment with a prototype of the service, the results of which suggest its practicality for supporting privacy-preserving data analytics as a (multi) cloud-based service.



قيم البحث

اقرأ أيضاً

Data markets have the potential to foster new data-driven applications and help growing data-driven businesses. When building and deploying such markets in practice, regulations such as the European Unions General Data Protection Regulation (GDPR) im pose constraints and restrictions on these markets especially when dealing with personal or privacy-sensitive data. In this paper, we present a candidate architecture for a privacy-preserving personal data market, relying on cryptographic primitives such as multi-party computation (MPC) capable of performing privacy-preserving computations on the data. Besides specifying the architecture of such a data market, we also present a privacy-risk analysis of the market following the LINDDUN methodology.
Contextual bandits are online learners that, given an input, select an arm and receive a reward for that arm. They use the reward as a learning signal and aim to maximize the total reward over the inputs. Contextual bandits are commonly used to solve recommendation or ranking problems. This paper considers a learning setting in which multiple parties aim to train a contextual bandit together in a private way: the parties aim to maximize the total reward but do not want to share any of the relevant information they possess with the other parties. Specifically, multiple parties have access to (different) features that may benefit the learner but that cannot be shared with other parties. One of the parties pulls the arm but other parties may not learn which arm was pulled. One party receives the reward but the other parties may not learn the reward value. This paper develops a privacy-preserving multi-party contextual bandit for this learning setting by combining secure multi-party computation with a differentially private mechanism based on epsilon-greedy exploration.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine be fore being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%
Trusted execution environments (TEE) such as Intels Software Guard Extension (SGX) have been widely studied to boost security and privacy protection for the computation of sensitive data such as human genomics. However, a performance hurdle is often generated by SGX, especially from the small enclave memory. In this paper, we propose a new Hybrid Secured Flow framework (called HySec-Flow) for large-scale genomic data analysis using SGX platforms. Here, the data-intensive computing tasks can be partitioned into independent subtasks to be deployed into distinct secured and non-secured containers, therefore allowing for parallel execution while alleviating the limited size of Page Cache (EPC) memory in each enclave. We illustrate our contributions using a workflow supporting indexing, alignment, dispatching, and merging the execution of SGX- enabled containers. We provide details regarding the architecture of the trusted and untrusted components and the underlying Scorn and Graphene support as generic shielding execution frameworks to port legacy code. We thoroughly evaluate the performance of our privacy-preserving reads mapping algorithm using real human genome sequencing data. The results demonstrate that the performance is enhanced by partitioning the time-consuming genomic computation into subtasks compared to the conventional execution of the data-intensive reads mapping algorithm in an enclave. The proposed HySec-Flow framework is made available as an open-source and adapted to the data-parallel computation of other large-scale genomic tasks requiring security and scalable computational resources.
Federated analytics has many applications in edge computing, its use can lead to better decision making for service provision, product development, and user experience. We propose a Bayesian approach to trend detection in which the probability of a k eyword being trendy, given a dataset, is computed via Bayes Theorem; the probability of a dataset, given that a keyword is trendy, is computed through secure aggregation of such conditional probabilities over local datasets of users. We propose a protocol, named SAFE, for Bayesian federated analytics that offers sufficient privacy for production grade use cases and reduces the computational burden of users and an aggregator. We illustrate this approach with a trend detection experiment and discuss how this approach could be extended further to make it production-ready.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا