ﻻ يوجد ملخص باللغة العربية
Numerical simulations of minor mergers, typically having mass ratios greater than 3:1, predict little enhancement in the global star formation activity. However, these models also predict that the satellite galaxy is more susceptible to the effects of the interaction than the primary. We use optical integral field spectroscopy and deep optical imaging to study the NGC7771+NGC7770 interacting system (~10:1 stellar mass ratio) to test these predictions. We find that the satellite galaxy NGC7770 is currently experiencing a galaxy-wide starburst with most of the optical light being from young and post-starburst stellar populations(<1Gyr). This galaxy lies off of the local star-forming sequence for composite galaxies with an enhanced integrated specific star formation rate. We also detect in the outskirts of NGC7770 Halpha emitting gas filaments. This gas appears to have been stripped from one of the two galaxies and is being excited by shocks. All these results are consistent with a minor-merger induced episode(s) of star formation in NGC7770 after the first close passage. Such effects are not observed on the primary galaxy NGC7771.
Using the N-body+Smoothed particle hydrodynamics code, ChaNGa, we identify two merger-driven processestextemdash disk disruption and supermassive black hole (SMBH) feedbacktextemdash which work together to quench L$^*$ galaxies for over 7 Gyr. Specif
Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a vari
We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data re
We present an observational study of the interaction effect on the dynamics and morphology of the minor merger AM1219-430. This work is based on r and g images and long-slit spectra obtained with the Gemini Multi-Object Spectrograph at the Gemini Sou
We present VIMOS integral field spectroscopy of the brightest radio-quiet QSO on the southern sky HE 1029-1401 at a redshift of z=0.086. Standard decomposition techniques for broad-band imaging are extended to integral field data in order to deblend