ترغب بنشر مسار تعليمي؟ اضغط هنا

Automation on the generation of genome scale metabolic models

220   0   0.0 ( 0 )
 نشر من قبل Daniel Gamermann Dr.
 تاريخ النشر 2012
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Nowadays, the reconstruction of genome scale metabolic models is a non-automatized and interactive process based on decision taking. This lengthy process usually requires a full year of one persons work in order to satisfactory collect, analyze and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. Results: This work presents the automation of a methodology for the reconstruction of genome scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome scale metabolic model of a photosynthetic organism, {it Synechocystis sp. PCC6803}. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. Conclusions: For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models like connectivity and average shortest mean path of the different models have been compared and analyzed.



قيم البحث

اقرأ أيضاً

A wide range of applications and research has been done with genome-scale metabolic models. In this work we describe a methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in ord er to infer evolutionary distances between different organisms. Our methodology allows a quantification of the metabolic differences between different species from a broad range of families and even kingdoms. This quantification is then applied in order to reconstruct phylogenetic trees for sets of various organisms.
We present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. W e provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. More importantly, we derive a number of consequences from the model that are independent of parameter values. First, that the ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties invariant across perfusion systems. This conclusion is robust even in the presence of multi-stability, which is explained in our model by the negative feedback loop on cell growth due to toxic byproduct accumulation. Moreover, a complex landscape of steady states in continuous cell culture emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced. Thus, in order to actually reflect the expected behavior in perfusion, performance benchmarks of cell-lines and culture media should be carried out in a chemostat.
A key step in the origin of life is the emergence of a primitive metabolism. This requires the formation of a subset of chemical reactions that is both self-sustaining and collectively autocatalytic. A generic theory to study such processes (called R AF theory) has provided a precise and computationally effective way to address these questions, both on simulated data and in laboratory studies. One of the classic applications of this theory (arising from Stuart Kauffmans pioneering work in the 1980s) involves networks of polymers under cleavage and ligation reactions; in the first part of this paper, we provide the first exact description of the number of such reactions under various model assumptions. Conclusions from earlier studies relied on either approximations or asymptotic counting, and we show that the exact counts lead to similar (though not always identical) asymptotic results. In the second part of the paper, we solve some questions posed in more recent papers concerning the computational complexity of some key questions in RAF theory. In particular, although there is a fast algorithm to determine whether or not a catalytic reaction network contains a subset that is both self-sustaining and autocatalytic (and, if so, find one), determining whether or not sets exist that satisfy certain additional constraints exist turns out to be NP-complete.
A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ~570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently-produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.
Despite their topological complexity almost all functional properties of metabolic networks can be derived from steady-state dynamics. Indeed, many theoretical investigations (like flux-balance analysis) rely on extracting function from steady states . This leads to the interesting question, how metabolic networks avoid complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to binary dynamics generated by simple local rules. We find that the networks response is highly specific: Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with identical degree sequences. Already small topological modifications substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally pronounced regularization of dynamics encoded in the topology may explain, why steady-state behavior is ubiquitous in metabolism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا