ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for a T-odd, P-even Triple Correlation in Neutron Decay

97   0   0.0 ( 0 )
 نشر من قبل Timothy Chupp
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Time-reversal-invariance violation, or equivalently CP violation, may explain the observed cosmological baryon asymmetry as well as signal physics beyond the Standard Model. In the decay of polarized neutrons, the triple correlation D<J_{n}>cdot(p_{e}timesp_{ u}) is a parity-even, time-reversal- odd observable that is uniquely sensitive to the relative phase of the axial-vector amplitude with respect to the vector amplitude. The triple correlation is also sensitive to possible contributions from scalar and tensor amplitudes. Final-state effects also contribute to D at the level of 1e-5 and can be calculated with a precision of 1% or better. Purpose: We have improved the sensitivity to T-odd, P-even interactions in nuclear beta decay. Methods: We measured proton-electron coincidences from decays of longitudinally polarized neutrons with a highly symmetric detector array designed to cancel the time-reversal-even, parity-odd Standard-Model contributions to polarized neutron decay. Over 300 million proton-electron coincidence events were used to extract D and study systematic effects in a blind analysis. Results: We find D = [-0.94pm1.89(stat)pm0.97(sys)]e-4. Conclusions: This is the most sensitive measurement of D in nuclear beta decay. Our result can be interpreted as a measurement of the phase of the ratio of the axial-vector and vector coupling constants (CA/CV= |{lambda}|exp(i{phi}_AV)) with {phi}_AV = 180.012{deg} pm0.028{deg} (68% confidence level) or to constrain time-reversal violating scalar and tensor interactions that arise in certain extensions to the Standard Model such as leptoquarks. This paper presents details of the experiment, analysis, and systematic- error corrections.



قيم البحث

اقرأ أيضاً

143 - J.R. Winkelbauer , S.R. Souza , 2013
Odd-Even Staggering (OES) appears in many areas of nuclear physics, and is generally associated with the pairing term in the nuclear binding energy. To explore this effect, we use the Improved Statistical Multifragmentation Model to populate an ensem ble of hot primary fragments, which are then de-excited using the Weisskopf-Ewing statistical emission formalism. The yields are then compared to experimental data. Our results show that, before secondary decay, OES appears only in the yields of even mass fragments and not in the yields of odd mass fragments. De-excitation of the hot fragments must be taken into account to describe the data, suggesting that the OES in fragment yields is a useful criterion for validating or adjusting theoretical de-excitation models.
Odd-even effects, also known as staggering effects, are a common feature observed in the yield distributions of fragments produced in different types of nuclear reactions. We review old methods, and we propose new ones, for a quantitative estimation of these effects as a function of proton or neutron number of the reaction products. All methods are compared on the basis of Monte Carlo simulations. We find that some are not well suited for the task, the most reliable ones being those based either on a non-linear fit with a properly oscillating function or on a third (or fourth) finite difference approach. In any case, high statistic is of paramount importance to avoid that spurious structures appear just because of statistical fluctuations in the data and of strong correlations among the yields of neighboring fragments.
We have observed beta-delayed proton emission from the neutron-rich nucleus 11Be by analysing a sample collected at the ISOLDE facility at CERN with accelerator mass spectrometry (AMS). With a branching ratio of (8.4 +- 0.6) 10^{-6} the strength of t his decay mode, as measured by the B(GT)-value, is unexpectedly high. The result is discussed within a simple single-particle model and could be interpreted as a quasi-free decay of the 11Be halo neutron into a single-proton state.
57 - M.V.Diwan , J. Frank , A. Gordeev 1996
We propose a new experiment at the AGS to search for the T-violating polarization of the muon normal to the decay plane of the K+ to mu+ pi0 nu decay. Motivated by the need for a stronger CP violation source to account for the baryon asymmetry of the Universe, the experiment aims to search for T-violation beyond the Standard Model. The experiment will be performed with in-flight decays from an intense 2 GeV/c separated K+ beam at the AGS. We expect to analyze 10**9 events to obtain the sensitivity of delta Pt = +- 0.00013 at 1 sigma, corresponding to the sensitivity of +-0.0007 to Im(xi), an improvement by 40 over the present limit.
135 - Z. Meisel , S. George , S. Ahn 2015
We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time w ith atomic mass excesses of -24.85(59)(+0 -54) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass-chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We found that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A=56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا