ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter imaging of submillimeter galaxies in the COSMOS field: Redshift distribution

230   0   0.0 ( 0 )
 نشر من قبل Vernesa Smolcic
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new IRAM PdBI 1.3mm continuum observations at ~1.5 resolution of 28 SMGs previously discovered with the 870um bolometer LABOCA at APEX within the central 0.7deg2 of the COSMOS field. 19 out of the 28 LABOCA sources were detected with the PdBI at a >~3sigma level of ~1.4mJy/b. A combined analysis of this new sample with existing interferometrically identified SMGs in the COSMOS field yields the following results: 1) >~15%, and possibly up to ~40% of single-dish detected SMGs consist of multiple sources, 2) statistical identifications of multi-wavelength counterparts to the single-dish SMGs yield that only ~50% of these single-dish SMGs have real radio or IR counterparts, 3) ~18% of interferometric SMGs have only radio or even no multi-wavelength counterpart at all, and 4) ~50-70% of z>~3 SMGs have no radio counterparts down to an rms of 7-12uJy at 1.4GHz. Using the exact interferometric positions to identify proper multi-wavelength counterparts allows us to determine accurate photometric redshifts for these sources. The redshift distributions of the combined and the individual 1.1mm and 870um selected samples have a higher mean and broader width than the redshift distributions derived in previous studies. Our sample supports the previous tentative trend that on average brighter and/or mm-selected SMGs are located at higher redshifts. There is a tentative offset between the mean redshift for the 1.1mm (<z>=3.1+/-0.4) and 870um (<z>=2.6+/-0.4) selected samples, with the 1.1mm sources lying on average at higher redshifts. Based on our nearly complete sample of AzTEC 1.1mm SMGs within a uniform 0.15deg2 area we infer a higher surface density of z>~4 SMGs than predicted by current cosmological models. In summary, our findings imply that (sub-)millimeter interferometric identifications are crucial to build statistically complete and unbiased samples of SMGs.



قيم البحث

اقرأ أيضاً

203 - James Simpson 2013
We present the first photometric redshift distribution for a large unbiased sample of 870um selected submillimeter galaxies (SMGs) with robust identifications based on observations with the Atacama Large Millimeter Array (ALMA). In our analysis we co nsider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band, optical-near-infrared, photometry. We model the Spectral Energy Distributions (SEDs) for these 77 SMGs, deriving a median photometric redshift of z=2.3+/-0.1. The remaining 19 SMGs have insufficient optical or near-infrared photometry to derive photometric redshifts, but a stacking analysis of IRAC and Herschel observations confirms they are not spurious. Assuming these sources have an absolute H-band magnitude distribution comparable to that of a complete sample of z~1-2 SMGs, we demonstrate that the undetected SMGs lie at higher redshifts, raising the median redshift for SMGs to z=2.5+/-0.2. More critically we show that the proportion of galaxies undergoing an SMG phase at z>3 is 35+/-5% of the total population. We derive a median stellar mass for SMGs of Mstar=(8+/-1)x10^10Mo, but caution that there are significant systematic uncertainties in our stellar mass estimate, up to x5 for individual sources. We compare our sample of SMGs to a volume-limited, morphologically classified sample of ellipticals in the local Universe. Assuming the star formation activity in SMGs has a timescale of ~100Myr we show that their descendants at z~0 would have a space density and M_H distribution which are in good agreement with those of local ellipticals. In addition the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.
We present sub-arcsecond resolution IRAM PdBI interferometry of eight submillimeter galaxies at redshifts from 2 to 3.4, where we detect continuum at 1mm and/or CO lines at 3 and 1 mm. The CO 3-2/4-3 line profiles in five of the sources are double-pe aked, indicative of orbital motion either in a single rotating disk or of a merger of two galaxies. The millimeter line and continuum emission is compact; we marginally resolve the sources or obtain tight upper limits to their intrinsic sizes in all cases. The median FWHM diameter for these sources and the previously resolved sources, SMMJ023952-0136 and SMMJ140104+0252 is less than or equal to 0.5 (4 kpc). The compactness of the sources does not support a scenario where the far-IR/submm emission comes from a cold, very extended dust distribution. These measurements clearly show that the submillimeter galaxies we have observed resemble scaled-up and more gas ri
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1mm selected sources in the COSMOS F ield, for which we obtain six reliable (peak S/N>5 or peak S/N>4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N>4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric followup. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology - including the nature of submillimeter galaxies with multiple radio counterparts and constraints on the physical scale of the far infrared - of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim submillimeter galaxies that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation - which struggle to account for such objects even under liberal assumptions - and dust production models given the limited time since the Big Bang.
Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensd dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope (SPT ). The sources were selected to have S_1.4mm>20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz<6mJy) or far-infrared counterparts (S_100um<1 Jy, S_60um<200mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of 12CO, 13CO, [CI], H2O, and H2O+. We find one or more spectral features in 23 sources yielding a ~90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for ~70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7<z<2.0. The resulting mean redshift of our sample is <z>=3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of <z>=2.3 and for which only 10-15% of the population is expected to be at z>3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.
We present APEX SABOCA 350micron and LABOCA 870micron observations of 11 representative examples of the rare, extremely bright (S_1.4mm > 15mJy), dust-dominated millimeter-selected galaxies recently discovered by the South Pole Telescope (SPT). All 1 1 sources are robustly detected with LABOCA with 40 < S_870micron < 130mJy, approximately an order of magnitude higher than the canonical submillimeter galaxy (SMG) population. Six of the sources are also detected by SABOCA at >3sigma, with the detections or upper limits providing a key constraint on the shape of the spectral energy distribution (SED) near its peak. We model the SEDs of these galaxies using a simple modified blackbody and perform the same analysis on samples of SMGs of known redshift from the literature. These calibration samples inform the distribution of dust temperature for similar SMG populations, and this dust temperature prior allows us to derive photometric redshift estimates and far infrared luminosities for the sources. We find a median redshift of <z> = 3.0, higher than the <z> = 2.2 inferred for the normal SMG population. We also derive the apparent size of the sources from the temperature and apparent luminosity, finding them to appear larger than our unlensed calibration sample, which supports the idea that these sources are gravitationally magnified by massive structures along the line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا